Jie Jing, Shiling Chen, Xuan Wu, Jingfei Yang, Xia Liu, Jiahui Wang, Jingyi Wang, Yunjie Li, Ping Zhang, Zhouping Tang
{"title":"重组组织纤溶酶原激活剂通过激活 PI3K/AKT/mTOR 通路保护脑内出血后的神经元。","authors":"Jie Jing, Shiling Chen, Xuan Wu, Jingfei Yang, Xia Liu, Jiahui Wang, Jingyi Wang, Yunjie Li, Ping Zhang, Zhouping Tang","doi":"10.4103/NRR.NRR-D-23-01953","DOIUrl":null,"url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202604000-00038/figure1/v/2025-06-30T060627Z/r/image-tiff Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage. However, during minimally invasive surgery, recombinant tissue plasminogen activator may come into contact with brain tissue. Therefore, a thorough assessment of its safety is required. In this study, we established a mouse model of intracerebral hemorrhage induced by type VII collagenase. We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage, reduced pathological damage, and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma. In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin, the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis, autophagy, and endoplasmic reticulum stress. Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons. Moreover, the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis, autophagy, and endoplasmic reticulum stress. Furthermore, to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects, various inhibitors were used to target distinct domains. It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway. These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage, possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1574-1585"},"PeriodicalIF":5.9000,"publicationDate":"2026-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombinant tissue plasminogen activator protects neurons after intracerebral hemorrhage through activating the PI3K/AKT/mTOR pathway.\",\"authors\":\"Jie Jing, Shiling Chen, Xuan Wu, Jingfei Yang, Xia Liu, Jiahui Wang, Jingyi Wang, Yunjie Li, Ping Zhang, Zhouping Tang\",\"doi\":\"10.4103/NRR.NRR-D-23-01953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>JOURNAL/nrgr/04.03/01300535-202604000-00038/figure1/v/2025-06-30T060627Z/r/image-tiff Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage. However, during minimally invasive surgery, recombinant tissue plasminogen activator may come into contact with brain tissue. Therefore, a thorough assessment of its safety is required. In this study, we established a mouse model of intracerebral hemorrhage induced by type VII collagenase. We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage, reduced pathological damage, and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma. In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin, the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis, autophagy, and endoplasmic reticulum stress. Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons. Moreover, the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis, autophagy, and endoplasmic reticulum stress. Furthermore, to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects, various inhibitors were used to target distinct domains. It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway. These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage, possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\" \",\"pages\":\"1574-1585\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2026-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-23-01953\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-23-01953","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
重组组织纤溶酶原激活剂常用于脑出血后的微创手术血肿清除。然而,在微创手术过程中,重组组织浆细胞酶原激活剂可能会接触到脑组织。因此,需要对其安全性进行全面评估。在这项研究中,我们建立了一个由 VII 型胶原酶诱发的脑内出血小鼠模型。我们观察到,在不抽吸血肿的情况下给予重组组织纤溶酶原激活剂能显著改善脑出血小鼠的神经功能,减少病理损伤,降低血肿周围组织的细胞凋亡和自噬水平。在使用海明诱导的原代皮质神经元的脑内出血体外模型中,服用重组组织纤溶酶原激活剂可抑制神经元凋亡、自噬和内质网应激。转录组测序分析表明,重组组织溶酶原激活剂上调了神经元的磷酸肌醇3-激酶/RAC-α丝氨酸/苏氨酸蛋白激酶/哺乳动物雷帕霉素靶蛋白通路。此外,磷脂酰肌醇3-激酶抑制剂LY294002还削弱了重组组织纤溶酶原激活剂在抑制过度凋亡、自噬和内质网应激方面的神经保护作用。此外,为了明确重组组织纤溶酶原激活剂发挥神经保护作用的结构域,研究人员使用了多种针对不同结构域的抑制剂。研究发现,表皮生长因子受体抑制剂 AG-1478 逆转了重组组织纤溶酶原激活剂对磷酸肌醇 3- 激酶/RAC-α丝氨酸/苏氨酸蛋白激酶/哺乳动物雷帕霉素靶途径的影响。这些研究结果表明,重组组织纤溶酶原激活剂可能通过激活磷脂酰肌醇3-激酶/RAC-α-丝氨酸/苏氨酸-蛋白激酶/哺乳动物雷帕霉素靶点通路,对脑出血后的神经元产生直接的神经保护作用。
Recombinant tissue plasminogen activator protects neurons after intracerebral hemorrhage through activating the PI3K/AKT/mTOR pathway.
JOURNAL/nrgr/04.03/01300535-202604000-00038/figure1/v/2025-06-30T060627Z/r/image-tiff Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage. However, during minimally invasive surgery, recombinant tissue plasminogen activator may come into contact with brain tissue. Therefore, a thorough assessment of its safety is required. In this study, we established a mouse model of intracerebral hemorrhage induced by type VII collagenase. We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage, reduced pathological damage, and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma. In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin, the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis, autophagy, and endoplasmic reticulum stress. Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons. Moreover, the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis, autophagy, and endoplasmic reticulum stress. Furthermore, to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects, various inhibitors were used to target distinct domains. It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway. These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage, possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.