Chimia最新文献

筛选
英文 中文
Academia / Industry Collaborations towards the Functionalization of Aryl Azoles. 学术界/产业界合作实现芳基偶氮的功能化。
IF 1.2 4区 化学
Chimia Pub Date : 2024-03-27 DOI: 10.2533/chimia.2024.104
Simon Wagschal, Diego Broggini
{"title":"Academia / Industry Collaborations towards the Functionalization of Aryl Azoles.","authors":"Simon Wagschal, Diego Broggini","doi":"10.2533/chimia.2024.104","DOIUrl":"https://doi.org/10.2533/chimia.2024.104","url":null,"abstract":"<p><p>Aryl azoles can be found in numerous active pharmaceutical ingredients (APIs). Milvexian is a Factor Xia inhibitor currently in phase III for the treatment of thrombotic events containing an ortho-substituted 1-aryl-1H-1,2,3-triazole moiety. During the process development of Milvexian, we assessed multiple approaches for the preparation of 4-chloro-1,2,3-triazole, intermediate 1. In this review article, we will detail how we initiated several academic collaborations to speed up the selection of the best synthesis for commercial manufacturing. Ultimately, those results not only helped us to achieve our goal but yielded general methodologies for the functionalization of azoles that extended even beyond our initial scope.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"104-107"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling-based Approach Towards Quality by Design for a Telescoped Process. 基于建模的方法,通过设计提高远程过程的质量。
IF 1.2 4区 化学
Chimia Pub Date : 2024-03-27 DOI: 10.2533/chimia.2024.135
This Zahnd, Maja Kandziora, Michael K Levis, Andreas Zogg
{"title":"Modeling-based Approach Towards Quality by Design for a Telescoped Process.","authors":"This Zahnd, Maja Kandziora, Michael K Levis, Andreas Zogg","doi":"10.2533/chimia.2024.135","DOIUrl":"https://doi.org/10.2533/chimia.2024.135","url":null,"abstract":"<p><p>A telescoped, two-step synthesis was investigated by applying Quality by Design principles. A kinetic model consisting of 12 individual reactions was successfully established to describe the synthesis and side reactions. The resulting model predicts the effects of changes in process parameters on total yield and quality. Contour plots were created by varying process parameters and displaying the model predicted process response. The areas in which the process response fulfils predetermined quality requirements are called design spaces. New ranges for process parameters were explored within these design spaces. New conditions were found that increased the robustness of the process and allowed for a considerable reduction of the used amounts of a reagent. Further optimizations, based on the newly generated knowledge, are expected. Improvements can either be direct process improvements or enhancements to control strategies. The developed strategies can also be applied to other processes, enhancing upcoming and preexisting research and development efforts.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"135-141"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial. 社论
IF 1.2 4区 化学
Chimia Pub Date : 2024-03-27
Lucie Lovelle
{"title":"Editorial.","authors":"Lucie Lovelle","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"101"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Alternative Procedure for a Win-win African-Swiss Cooperation in Gold Production in Africa. 非洲与瑞士在非洲黄金生产合作中实现双赢的替代程序。
IF 1.2 4区 化学
Chimia Pub Date : 2024-03-27 DOI: 10.2533/chimia.2024.159
Aliyar Mousavi
{"title":"An Alternative Procedure for a Win-win African-Swiss Cooperation in Gold Production in Africa.","authors":"Aliyar Mousavi","doi":"10.2533/chimia.2024.159","DOIUrl":"10.2533/chimia.2024.159","url":null,"abstract":"<p><p>The growth of Africa as a major gold (Au) exporter can not only strengthen economic ties with other parts of the world, but also lead to solutions to global industrial challenges, and the only way to stop gold smuggling out of gold-producing African countries seems to be having multiple refineries in Africa, for which developing gold-producing African countries might need technological assistance provided by a more developed country, especially Switzerland. In this Note, the chemistry of gold mining was discussed, and the idea is conveyed that if aqua regia is used as a main reagent in both gold mining and the electrolytic refinement of gold, then the two systems of gold mining and gold refining can be coupled industrially and geographically, and such a coupling can facilitate the growth of home-grown gold refineries in gold-producing African countries. It is also discussed that with Swiss companies finding it economical to properly use aqua regia in Africa as described, a win-win African-Swiss cooperation will be established that will benefit both the Swiss companies and gold-producing African countries. Further, it is concluded that the addressed cooperation will be accompanied by four of the seventeen goals called 'Sustainable Development Goals' by the United Nations.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"159-161"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excelzyme: A Swiss University-Industry Collaboration for Accelerated Biocatalyst Development. Excelzyme:加速生物催化剂开发的瑞士产学合作项目。
IF 1.2 4区 化学
Chimia Pub Date : 2024-03-27 DOI: 10.2533/chimia.2024.108
Sumire Honda Malca, Peter Stockinger, Nadine Duss, Daniela Milbredt, Hans Iding, Rebecca Buller
{"title":"Excelzyme: A Swiss University-Industry Collaboration for Accelerated Biocatalyst Development.","authors":"Sumire Honda Malca, Peter Stockinger, Nadine Duss, Daniela Milbredt, Hans Iding, Rebecca Buller","doi":"10.2533/chimia.2024.108","DOIUrl":"10.2533/chimia.2024.108","url":null,"abstract":"<p><p>Excelzyme, an enzyme engineering platform located at the Zurich University of Applied Sciences, is dedicated to accelerating the development of tailored biocatalysts for large-scale industrial applications. Leveraging automation and advanced computational techniques, including machine learning, efficient biocatalysts can be generated in short timeframes. Toward this goal, Excelzyme systematically selects suitable protein scaffolds as the foundation for constructing complex enzyme libraries, thereby enhancing sequence and structural biocatalyst diversity. Here, we describe applied workflows and technologies as well as an industrial case study that exemplifies the successful application of the workflow.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"108-117"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial Chemistry and Catalysis of Inorganic Materials. 无机材料的界面化学与催化。
IF 1.2 4区 化学
Chimia Pub Date : 2024-02-28 DOI: 10.2533/chimia.2024.7
Tzu-Chin Chang Chien, Murielle F Delley
{"title":"Interfacial Chemistry and Catalysis of Inorganic Materials.","authors":"Tzu-Chin Chang Chien, Murielle F Delley","doi":"10.2533/chimia.2024.7","DOIUrl":"https://doi.org/10.2533/chimia.2024.7","url":null,"abstract":"<p><p>Heterogeneous catalysis is essential to most industrial chemical processes. To achieve a better sustainability of these processes we need highly efficient and highly selective catalysts that are based on earth-abundant materials rather than the more conventional noble metals. Here, we discuss the potential of inorganic materials as catalysts for chemical transformations focusing in particular on the promising transition metal phosphides and sulfides. We describe our recent and current efforts to understand the interfacial chemistry of these materials that governs catalysis, and to tune catalytic reactivity by controlled chemical modification of the material surfaces and by use of interfacial electric fields.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"7-12"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capturing the Chirality of Photoexcited States with Ultrafast Circular Dichroism. 利用超快圆二色性捕捉光激发态的手性。
IF 1.2 4区 化学
Chimia Pub Date : 2024-02-28 DOI: 10.2533/chimia.2024.45
Malte Oppermann
{"title":"Capturing the Chirality of Photoexcited States with Ultrafast Circular Dichroism.","authors":"Malte Oppermann","doi":"10.2533/chimia.2024.45","DOIUrl":"https://doi.org/10.2533/chimia.2024.45","url":null,"abstract":"<p><p>Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other but non-superimposable. Even though enantiomers share most chemical and physical properties, they may differ greatly in their (bio-)chemical activities, which turns chirality into a key design feature for (bio-)chemical function. In this spirit, the incorporation of chiral structures into photochemical systems has emerged as a powerful strategy to control their functions. For example, uni-directional molecular motors, chiral photocatalysts, and chiral metal nanostructures permit new levels of stereocontrol over mechanical motion, energy transfer, and electric charge-carriers on the nanoscale. However, the direct characterization of the underlying chiral photoexcited states remains a formidable experimental challenge - especially in the native solution phase of many photochemical processes. Crucially, this requires analytical techniques that combine a high chiral sensitivity in solution with ultrafast time resolution to capture the excited state dynamics. This brief perspective article presents recent progress in the development of ultrafast chiral spectroscopy techniques that address this challenge.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"45-49"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial. 社论
IF 1.2 4区 化学
Chimia Pub Date : 2024-02-28
Catherine Housecroft
{"title":"Editorial.","authors":"Catherine Housecroft","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"6"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron-Transferring Metalloenzymes and their Potential Biotechnological Applications. 电子转移金属酶及其潜在的生物技术应用。
IF 1.2 4区 化学
Chimia Pub Date : 2024-02-28 DOI: 10.2533/chimia.2024.13
Ross D Milton
{"title":"Electron-Transferring Metalloenzymes and their Potential Biotechnological Applications.","authors":"Ross D Milton","doi":"10.2533/chimia.2024.13","DOIUrl":"10.2533/chimia.2024.13","url":null,"abstract":"<p><p>Modern societies rely heavily on centralized industrial processes to generate a multitude of products ranging from electrical energy to synthetic chemical building blocks to construction materials. To date, these processes have relied extensively on energy produced from fossil fuels, which has led to dramatically increased quantities of greenhouse gases (including carbon dioxide) being released into the atmosphere; the effects of the ensuing change to our climate are easily observed in day-to-day life. Some of the reactions catalyzed by these industrial processes can be catalyzed in nature by metal-containing enzymes (metalloenzymes) that have evolved over the course of up to 3.8 billion years to do so under mild physiological conditions using Earth-abundant metals. While such metalloenzymes could in principle facilitate the implementation of carbon-neutral processes around the globe, either in \"bio-inspired\" catalyst design or even by direct exploitation, many remaining questions surrounding their mechanisms often preclude both options. Here, our recent efforts in understanding and applying metalloenzymes that catalyze reactions such as dinitrogen reduction to ammonia or proton reduction to molecular hydrogen are discussed. In closing, an opinion on the question: \"Can these types of enzymes really be used in new biotechnologies?\" is offered.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"13-21"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical Approaches to Genetic Code Expansion with Aminoacyl-tRNA Synthetase/tRNA Pairs. 利用氨基酰-tRNA 合成酶/tRNA 对扩展遗传密码的实用方法。
IF 1.2 4区 化学
Chimia Pub Date : 2024-02-28 DOI: 10.2533/chimia.2024.22
Anton Natter Perdiguero, Alexandria Deliz Liang
{"title":"Practical Approaches to Genetic Code Expansion with Aminoacyl-tRNA Synthetase/tRNA Pairs.","authors":"Anton Natter Perdiguero, Alexandria Deliz Liang","doi":"10.2533/chimia.2024.22","DOIUrl":"10.2533/chimia.2024.22","url":null,"abstract":"<p><p>Genetic code expansion (GCE) can enable the site-selective incorporation of non-canonical amino acids (ncAAs) into proteins. GCE has advanced tremendously in the last decade and can be used to create biorthogonal handles, monitor and control proteins inside cells, study post-translational modifications, and engineer new protein functions. Since establishing our laboratory, our research has focused on applications of GCE in protein and enzyme engineering using aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. This topic has been reviewed extensively, leaving little doubt that GCE is a powerful tool for engineering proteins and enzymes. Therefore, for this young faculty issue, we wanted to provide a more technical look into the methods we use and the challenges we think about in our laboratory. Since starting the laboratory, we have successfully engineered over a dozen novel aaRS/tRNA pairs tailored for various GCE applications. However, we acknowledge that the field can pose challenges even for experts. Thus, herein, we provide a review of methodologies in ncAA incorporation with some practical commentary and a focus on challenges, emerging solutions, and exciting developments.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"22-31"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信