ChimiaPub Date : 2024-05-29DOI: 10.2533/chimia.2024.288
Bidyut Bikash Sarma, Jan-Dierk Grunwaldt
{"title":"Operando Spectroscopy to Understand Dynamic Structural Changes of Solid Catalysts.","authors":"Bidyut Bikash Sarma, Jan-Dierk Grunwaldt","doi":"10.2533/chimia.2024.288","DOIUrl":"https://doi.org/10.2533/chimia.2024.288","url":null,"abstract":"<p><p>Solid materials like heterogeneous catalysts are highly dynamic and continuously tend to change when exposed to the reaction environment. To understand the catalyst system under true reaction conditions,operando spectroscopy is the key to unravel small changes, which can ultimately lead to a significant difference in catalytic activity and selectivity. This was also the topic of the 7th International Congress on Operando Spectroscopy in Switzerland in 2023. In this article, we discuss various examples to introduce and demonstrate the importance of this area, including examples from emission control for clean air (e.g. CO oxidation), oxidation catalysis in the chemical industry (e.g. oxidation of isobutene), future power-to-X processes (electrocatalysis, CO2 hydrogenation to methanol), and non-oxidative conversion of methane. All of these processes are equally relevant to the chemical industry. Complementary operando techniques such as X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and Raman spectroscopy were utilized to derive the ultimate structure of the catalyst. The variety of conditions requires distinctly different operando cells that can reach a temperature range of 400-1000 °C and pressures up to 40 bar. The best compromise for both the spectroscopy and the catalytic reaction is needed. As an outlook, we highlight emerging methods such as modulation-excitation spectroscopy (MES) or quick-extended X-ray absorption fine structure (QEXAFS) and X-ray photon in/out techniques, which can provide better sensitivity or extend X-ray based operando studies.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 5","pages":"288-296"},"PeriodicalIF":1.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChimiaPub Date : 2024-05-29DOI: 10.2533/chimia.2024.339
Vasiliki Tileli
{"title":"Quasi-operando Transmission Electron Microscopy Diagnostics for Electrocatalytic Processes in Liquids.","authors":"Vasiliki Tileli","doi":"10.2533/chimia.2024.339","DOIUrl":"https://doi.org/10.2533/chimia.2024.339","url":null,"abstract":"<p><p>The need to relate the mechano-physico-chemical phenomena in liquid-based electrocatalysts to the stages of start-up, operation, and shut-down phases is one of the major challenges that the energy community is facing. Understanding these phenomena will pave the way for the tailor-made design of efficient, commercially viable electrocatalytic systems. Transmission electron microscopy plays an important role in the investigation of local electrocatalytic effects, complementing other operando characterization techniques. Herein, after attempting to define the meaning of operando methodologies in relation to electron microscopy studies, the progress in the field is reviewed in terms of the knowledge gained about the catalysts, the solid-liquid interfaces, and the solid-liquid-gas interfacial phenomena for several electrocatalytic reactions. Finally, the parameters that require consideration in operando ec-LPTEM studies of electrocatalytic systems are discussed.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 5","pages":"339-343"},"PeriodicalIF":1.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial.","authors":"Eva Hevia, Hans Peter Lüthi","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 4","pages":"189"},"PeriodicalIF":1.2,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChimiaPub Date : 2024-04-24DOI: 10.2533/chimia.2024.215
Nina Glaser, Markus Reiher
{"title":"Solving Intractable Chemical Problems by Tensor Decomposition.","authors":"Nina Glaser, Markus Reiher","doi":"10.2533/chimia.2024.215","DOIUrl":"https://doi.org/10.2533/chimia.2024.215","url":null,"abstract":"<p><p>Many complex chemical problems encoded in terms of physics-based models become computationally intractable for traditional numerical approaches due to their unfavorable scaling with increasing molecular size. Tensor decomposition techniques can overcome such challenges by decomposing unattainably large numerical representations of chemical problems into smaller, tractable ones. In the first two decades of this century, algorithms based on such tensor factorizations have become state-of-the-art methods in various branches of computational chemistry, ranging from molecular quantum dynamics to electronic structure theory and machine learning. Here, we consider the role that tensor decomposition schemes have played in expanding the scope of computational chemistry. We relate some of the most prominent methods to their common underlying tensor network formalisms, providing a unified perspective on leading tensor-based approaches in chemistry and materials science.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 4","pages":"215-221"},"PeriodicalIF":1.2,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChimiaPub Date : 2024-03-27DOI: 10.2533/chimia.2024.142
Barbara Pföss, Jonathan Caldi, Sutida Jansod, Christophe Allemann, Pierre Brodard, Roger Marti
{"title":"Up-scaling a Sol-Gel Process for the Production of a Multi-Component Xerogel Powder.","authors":"Barbara Pföss, Jonathan Caldi, Sutida Jansod, Christophe Allemann, Pierre Brodard, Roger Marti","doi":"10.2533/chimia.2024.142","DOIUrl":"https://doi.org/10.2533/chimia.2024.142","url":null,"abstract":"<p><p>A sol-gel process for the synthesis of a multi-component oxide material from the system SiO2-ZrO2-Al2O3underwent optimization and up-scaling. Initially, on a laboratory scale, components including precursors, catalysts, and additives were methodically evaluated to ensure a safe and efficient transition to larger volumes. Subsequently, the equipment for the whole setup of the sol-gel process was strategically selected. Leveraging insights from these optimizations, the process was successfully scaled-up to pilot-scale operation, conducting hydrolysis, condensation reactions, gelation, aging, and drying within a single, integrated conical dryer system for an 80 L batch. A visual test and FTIR spectroscopy were applied for process control and monitoring.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"142-147"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChimiaPub Date : 2024-03-27DOI: 10.2533/chimia.2024.123
Ivan Ocaña, Peter J H Williams, James Donald, Neil Griffin, George Hodges, Andrew R Rickard, Victor Chechik
{"title":"Enhanced Mechanistic Understanding Through the Detection of Radical Intermediates in Organic Reactions.","authors":"Ivan Ocaña, Peter J H Williams, James Donald, Neil Griffin, George Hodges, Andrew R Rickard, Victor Chechik","doi":"10.2533/chimia.2024.123","DOIUrl":"https://doi.org/10.2533/chimia.2024.123","url":null,"abstract":"<p><p>Two applications of a radical trap based on a homolytic substitution reaction (SH2') are presented for the trapping of short-lived radical intermediates in organic reactions. The first example is a photochemical cyanomethylation catalyzed by a Ru complex. Two intermediate radicals in the radical chain propagation have been trapped and detected using mass spectrometry (MS), along with the starting materials, products and catalyst degradation fragments. Although qualitative, these results helped to elucidate the reaction mechanism. In the second example, the trapping method was applied to study the radical initiation catalyzed by a triethylboronoxygen mixture. In this case, the concentration of trapped radicals was sufficiently high to enable their detection by nuclear magnetic resonance (NMR). Quantitative measurements made it possible to characterize the radical flux in the system under different reaction conditions (including variations of solvent, temperature and concentration) where modelling was complicated by chain reactions and heterogeneous mass transfer.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"123-128"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChimiaPub Date : 2024-03-27DOI: 10.2533/chimia.2024.148
Mehmet Ogün Biçer, Erik Von Harbou, Andreas Klein, Hilke-Marie Lorenz, Christoph Taeschler
{"title":"Industrial Distillation Aspects of Diketene.","authors":"Mehmet Ogün Biçer, Erik Von Harbou, Andreas Klein, Hilke-Marie Lorenz, Christoph Taeschler","doi":"10.2533/chimia.2024.148","DOIUrl":"https://doi.org/10.2533/chimia.2024.148","url":null,"abstract":"<p><p>Large-scale distillation is a challenge in many respects. Particularly difficult is the purification by distillation of a compound with limited thermal stability. This article describes various aspects of these difficulties with some possible solutions. Special emphasis is placed on the collaboration of different disciplines to find pragmatic solutions to these challenges. The purification of diketene in quantities of several 1000 ta-1 is an excellent example to illustrate the different requirements. Although the distillation of diketene has been carried out by several companies for many years, there are still some aspects that deserve special attention.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"148-158"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChimiaPub Date : 2024-03-27DOI: 10.2533/chimia.2024.129
Amy Sparks, Lynn Gladden, Colin Brennan, Mick Mantle
{"title":"Operando Nuclear Magnetic Resonance (NMR) Studies of a Trickle-bed Reactor Using D-T2 Correlations.","authors":"Amy Sparks, Lynn Gladden, Colin Brennan, Mick Mantle","doi":"10.2533/chimia.2024.129","DOIUrl":"https://doi.org/10.2533/chimia.2024.129","url":null,"abstract":"<p><p>Catalytic conversions in fine-chemical and pharmaceutical production are increasingly performed in trickle-bed rectors. Optimisation of these processes is usually based on end of pipe measurement made at specific residence times. This process is both time-consuming and the data sometimes challenging to interpret. In the present work, operando nuclear magnetic resonance (NMR) techniques both at the scale of the whole bed (global) and spatially resolved within the bed (local) are used to gain new insights into the catalytic conversion process under reaction conditions. Spatially resolved spectroscopic and diffusion-T2-relaxation (D-T2) methods interrogate local differences in chemical conversion and selectivity, and mass transport (molecular self-diffusion) respectively, thereby providing valuable information for process simulation models. This capability is demonstrated using the continuous flow three phase (gas-liquid-solid) hydrogenation of benzonitrile over a fixed bed of 0.5 wt% Pd/Al2O3 catalyst pellets yielding toluene and benzylamine. Global 1H spectroscopic and D-T2 were used to monitor chemical conversion and the approach to steady state; these were subsequently followed by spatially resolved 1H spectra and spatially resolved D-T2 correlations to examine the local differences in axial conversion and selectivity of the catalyst bed packing. At steady-state a global conversion of 63% was achieved with 65% and 25% selectivity to benzylamine and toluene respectively. Heterogeneities in the local (axial) conversion and selectivity differed by 31% along the total catalyst bed length. These techniques should be applicable to many three-phase heterogeneous catalytic systems provided that the T2 relaxation time of the reactants and products is not prohibitively small.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"129-134"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChimiaPub Date : 2024-03-27DOI: 10.2533/chimia.2024.118
Achim Link, Patrick Furer, Matthew L Clarke, Marc Müller
{"title":"Towards the Industrial Implementation of Mn-based Catalyst for the Hydrogenation of Ketones and Carboxylic Esters.","authors":"Achim Link, Patrick Furer, Matthew L Clarke, Marc Müller","doi":"10.2533/chimia.2024.118","DOIUrl":"https://doi.org/10.2533/chimia.2024.118","url":null,"abstract":"<p><p>There is a constant pressure in industry to move away from platinum group metals (PGM) and achieve more environmentally friendly and sustainable production processes in the future. Recently developed Mn-based catalysts offer an interesting opportunity to complement established catalysts based on Ru. In this article, recent achievements in the field are highlighted and recent achievements in the collaboration of Solvias AG with the group of Prof. M. Clarke towards the implementation of these catalysts on industrial scale are outlined.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 3","pages":"118-122"},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}