胶体卤化铅过氧化物量子点的第一个十年(在我们的实验室)。

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Chimia Pub Date : 2024-12-18 DOI:10.2533/chimia.2024.862
Dmitry N Dirin, Maksym V Kovalenko
{"title":"胶体卤化铅过氧化物量子点的第一个十年(在我们的实验室)。","authors":"Dmitry N Dirin, Maksym V Kovalenko","doi":"10.2533/chimia.2024.862","DOIUrl":null,"url":null,"abstract":"<p><p>Ten years after the discovery of colloidal lead halide perovskite nanocrystals (LHP NCs), the field has witnessed substantial progress in synthetic methods, understanding of their surface chemistry and unique optical properties, precise control over NC size, shape, and composition. Ligand engineering, particularly with cationic and zwitterionic head groups, massively enhanced NC stability, compatibility with organic solvents, and photoluminescence efficiency. These breakthroughs allowed for the self-assembly of monodisperse NCs into complex long-range ordered superlattices and enabled the exploration of collective optical phenomena, such as superfluorescence. The development of low-cost scalable approaches like microfluidic systems and mechanochemical synthesis paved the way for the commercialization of LHP NCs, particularly for the down-conversion films in blue-backlit LCDs and as thermally-efficient color converters in pixelated displays. This review aims to trace the journey of these advancements, focusing on contributions from Switzerland, and outline future directions in this rapidly evolving field, such as quantum light sources, photocatalysis, etc.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 12","pages":"862-868"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The First Decade of Colloidal Lead Halide Perovskite Quantum Dots (in our Laboratory).\",\"authors\":\"Dmitry N Dirin, Maksym V Kovalenko\",\"doi\":\"10.2533/chimia.2024.862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ten years after the discovery of colloidal lead halide perovskite nanocrystals (LHP NCs), the field has witnessed substantial progress in synthetic methods, understanding of their surface chemistry and unique optical properties, precise control over NC size, shape, and composition. Ligand engineering, particularly with cationic and zwitterionic head groups, massively enhanced NC stability, compatibility with organic solvents, and photoluminescence efficiency. These breakthroughs allowed for the self-assembly of monodisperse NCs into complex long-range ordered superlattices and enabled the exploration of collective optical phenomena, such as superfluorescence. The development of low-cost scalable approaches like microfluidic systems and mechanochemical synthesis paved the way for the commercialization of LHP NCs, particularly for the down-conversion films in blue-backlit LCDs and as thermally-efficient color converters in pixelated displays. This review aims to trace the journey of these advancements, focusing on contributions from Switzerland, and outline future directions in this rapidly evolving field, such as quantum light sources, photocatalysis, etc.</p>\",\"PeriodicalId\":9957,\"journal\":{\"name\":\"Chimia\",\"volume\":\"78 12\",\"pages\":\"862-868\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2024.862\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2024.862","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The First Decade of Colloidal Lead Halide Perovskite Quantum Dots (in our Laboratory).

Ten years after the discovery of colloidal lead halide perovskite nanocrystals (LHP NCs), the field has witnessed substantial progress in synthetic methods, understanding of their surface chemistry and unique optical properties, precise control over NC size, shape, and composition. Ligand engineering, particularly with cationic and zwitterionic head groups, massively enhanced NC stability, compatibility with organic solvents, and photoluminescence efficiency. These breakthroughs allowed for the self-assembly of monodisperse NCs into complex long-range ordered superlattices and enabled the exploration of collective optical phenomena, such as superfluorescence. The development of low-cost scalable approaches like microfluidic systems and mechanochemical synthesis paved the way for the commercialization of LHP NCs, particularly for the down-conversion films in blue-backlit LCDs and as thermally-efficient color converters in pixelated displays. This review aims to trace the journey of these advancements, focusing on contributions from Switzerland, and outline future directions in this rapidly evolving field, such as quantum light sources, photocatalysis, etc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimia
Chimia 化学-化学综合
CiteScore
1.60
自引率
0.00%
发文量
144
审稿时长
2 months
期刊介绍: CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信