Chemical Product and Process Modeling最新文献

筛选
英文 中文
Estimation of 2,4-dichlorophenol photocatalytic removal using different artificial intelligence approaches 不同人工智能方法对2,4-二氯苯酚光催化去除效果的评价
IF 0.9
Chemical Product and Process Modeling Pub Date : 2022-04-13 DOI: 10.1515/cppm-2021-0065
Narjes Esmaeili, Fatemeh Esmaeili Khalil Saraei, Azadeh Ebrahimian Pirbazari, Fatemeh-Sadat Tabatabai-Yazdi, Ziba Khodaee, Ali Amirinezhad, Amin Esmaeili, Ali Ebrahimian Pirbazari
{"title":"Estimation of 2,4-dichlorophenol photocatalytic removal using different artificial intelligence approaches","authors":"Narjes Esmaeili, Fatemeh Esmaeili Khalil Saraei, Azadeh Ebrahimian Pirbazari, Fatemeh-Sadat Tabatabai-Yazdi, Ziba Khodaee, Ali Amirinezhad, Amin Esmaeili, Ali Ebrahimian Pirbazari","doi":"10.1515/cppm-2021-0065","DOIUrl":"https://doi.org/10.1515/cppm-2021-0065","url":null,"abstract":"Abstract Photocatalytic degradation is one of the effective methods to remove various pollutants from domestic and industrial effluents. Several operational parameters can affect the efficiency of photocatalytic degradation. Performing experimental methods to obtain the percentage degradation (%degradation) of pollutants in different operating conditions is costly and time-consuming. For this reason, the use of computational models is very useful to present the %degradation in various operating conditions. In our previous work, Fe3O4/TiO2 nanocomposite containing different amounts of silver nanoparticles (Fe3O4/TiO2/Ag) were synthesized, characterized by various analytical techniques and applied to degradation of 2,4-dichlorophenol (2,4-DCP). In this work, a series of models, including stochastic gradient boosting (SGB), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), the improvement of ANFIS with genetic algorithm (GA-ANFIS), and particle swarm optimization (PSO-ANFIS) were developed to estimate the removal percentage of 2,4-DCP. The model inputs comprised of catalyst dosage, radiation time, initial concentration of 2,4-DCP, and various volumes of AgNO3. Evaluating the developed models showed that all models can predict the occurring phenomena with good compatibility, but the PSO-ANFIS and the SGB models gave a high accuracy with the coefficient of determination (R2) of 0.99. Moreover, the relative contributions, and the relevancy factors of input parameters were evaluated. The catalyst dosage and radiation time had the highest (32.6%), and the lowest (16%) relative contributions on the predicting of removal percentage of 2,4-DCP, respectively.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"247 - 263"},"PeriodicalIF":0.9,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44976389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Competitive adsorption of heavy metals in a quaternary solution by sugarcane bagasse – LDPE hybrid biochar: equilibrium isotherm and kinetics modelling 甘蔗渣-LDPE杂化生物炭对季铵溶液中重金属的竞争吸附:平衡等温线和动力学模型
IF 0.9
Chemical Product and Process Modeling Pub Date : 2022-04-08 DOI: 10.1515/cppm-2021-0056
Joshua O. Ighalo, Samuel Ogunniyi, A. Adeniyi, Chinenye Adaobi Igwegbe, Saheed Kayode Sanusi, C. A. Adeyanju
{"title":"Competitive adsorption of heavy metals in a quaternary solution by sugarcane bagasse – LDPE hybrid biochar: equilibrium isotherm and kinetics modelling","authors":"Joshua O. Ighalo, Samuel Ogunniyi, A. Adeniyi, Chinenye Adaobi Igwegbe, Saheed Kayode Sanusi, C. A. Adeyanju","doi":"10.1515/cppm-2021-0056","DOIUrl":"https://doi.org/10.1515/cppm-2021-0056","url":null,"abstract":"Abstract Sugarcane is a notable crop grown in the tropical region of the world. It is an abundant waste material of the sugar industry which is a low cost and low combustion fuel thus the bagasse can be exploited to manufacture adsorbents for water treatment. Because the presence of contaminants in polluted water is not uniform, pollutant species compete for active sites during the adsorption process. Investigation of the competitive adsorption of Zn(II), Cu(II), Pb(II), and Fe(II) in a quaternary solution using hybrid biochar developed from sugarcane bagasse (SCB) mixed Low-Density Polyethylene (LDPE) and pure SCB biochar is the main aim of this study. The biochar was developed using the retort carbonisation process and characterised via SEM (Scanning Electron Microscopy), BET (Branueur Emmett Teller) analysis, and FTIR (Fourier Transform Infrared Spectroscopy). Both biochar species mixture possessed some orbicular properties with mesoporous heterogeneous superficial morphology. The biomass biochar and hybrid biochar specific surface area are 533.6 m2/g and 510.5 m2/g respectively. For the two used adsorbents, >99% removal efficiency was recorded over the sphere for dosage investigation. Thus, this implies they are capable of removing heavy metals from the aqueous solution simulated. The Langmuir isotherm fitted best in each domain however there was an exception for Pb(II) ions in biomass biochar with the experimental adsorption capacity of ∼ 22 mg/g for the HMs. Based on the correlation coefficient (R 2); the experimental data fitted the pseudo-first-order kinetic model well having a correlation coefficient value of greater than 0.9. The mechanism of adsorption for the HMs was chemisorption. This study has a three-pronged benefit of water treatment, resource conservation, and solid waste utilisation.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"231 - 246"},"PeriodicalIF":0.9,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47772505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Numerical study of coupled natural convection to surface radiation in an open cavity submitted to lateral or corner heating 受侧向或角向加热的开腔内自然对流与表面辐射耦合的数值研究
IF 0.9
Chemical Product and Process Modeling Pub Date : 2022-03-24 DOI: 10.1515/cppm-2020-0056
Z. Charqui, M. Boukendil, L. El moutaouakil, Z. Zrikem, A. Abdelbaki
{"title":"Numerical study of coupled natural convection to surface radiation in an open cavity submitted to lateral or corner heating","authors":"Z. Charqui, M. Boukendil, L. El moutaouakil, Z. Zrikem, A. Abdelbaki","doi":"10.1515/cppm-2020-0056","DOIUrl":"https://doi.org/10.1515/cppm-2020-0056","url":null,"abstract":"Abstract The present study reports numerical results of coupled heat transfer by natural convection and surface radiation in an open air-filled cavity. Two heating modes are considered; in the first mode called LH (lateral heating), the cavity is heated via its lateral wall, while in the second mode named CH (corner heating), the cavity is heated via its bottom corner (the lower half of the vertical wall and the left half of the bottom wall). The rest of the walls are assumed to be perfectly adiabatic. The conservation equations were solved using the Finite Volume Method (FVM) combined with the SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equations). The radiation heat transfer between the different surfaces of the cavity was treated by the radiosity-irradiation method. Results are presented in terms of isotherms, streamlines, and Nusselt numbers. The effect of the Rayleigh number Ra on the flow structure, the distribution of temperature gradients, the local and mean Nusselt numbers is discussed. Also, a comparison between results of the two heating modes is conducted.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"235 - 254"},"PeriodicalIF":0.9,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43548838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process model correlating Athabasca bitumen thermally cracked at edge of coking induction zone 阿萨巴斯卡沥青焦化感应区边缘热裂过程模型
IF 0.9
Chemical Product and Process Modeling Pub Date : 2022-03-14 DOI: 10.1515/cppm-2021-0033
D. Remesat
{"title":"Process model correlating Athabasca bitumen thermally cracked at edge of coking induction zone","authors":"D. Remesat","doi":"10.1515/cppm-2021-0033","DOIUrl":"https://doi.org/10.1515/cppm-2021-0033","url":null,"abstract":"Abstract Athabasca bitumen is an abundant resource that has successfully been upgraded using delayed coking that typically operates at 499 °C (∼930 °F), 207 kPa (∼37 psig), 1–2 min residence time on this type of crude. With society’s desire to reduce industry environmental impact while still providing energy to earth’s growing population, lower energy intensive (and thus lower greenhouse gas emissions) bitumen conversion approaches have been researched and are moving towards commercialization. The paper reviews a correlative model developed on a novel thermal cracking process, operated at lower temperatures (395–405 °C (743–761 °F)), lower pressures (<69 kPa (∼<10 psig) and up to 1 h residence time versus delayed coking, that takes various lab and pilot data, both batch and continuous, as inputs into developing the model. The purpose of the model is for use in industrial operations to provide guidance to operations for representative thermal cracker performance. The model is based on the Arrhenius equation using first order reaction kinetics for easy comprehension and use in an operational environment. Data for developing the model has been taken from various literature sources in the area of study, notably by researchers, Dr. W. Svrcek, Dr. Wiehe, Dr. Mehrotra, and Dr. Yarranton. The public data is used to create a viable range of performance that includes proprietary developments with the novel thermal cracking process. The model is configured on a mass basis so that mass balance closure can be readily calculated. A range of kinetic coefficients are provided that can be used to fit commercial plant performance based on the expected range of product outputs noted in the paper.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"379 - 394"},"PeriodicalIF":0.9,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66934234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter Frontmatter
IF 0.9
Chemical Product and Process Modeling Pub Date : 2022-02-01 DOI: 10.1515/cppm-2022-frontmatter1
{"title":"Frontmatter","authors":"","doi":"10.1515/cppm-2022-frontmatter1","DOIUrl":"https://doi.org/10.1515/cppm-2022-frontmatter1","url":null,"abstract":"","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48121833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and simulation assessment to mitigate the emission of sulfide toxic gases and removing main impurities from Zn + Pb + Cu recovery plants 减少Zn+Pb+Cu回收厂硫化物有毒气体排放和去除主要杂质的实验和模拟评估
IF 0.9
Chemical Product and Process Modeling Pub Date : 2022-01-31 DOI: 10.1515/cppm-2021-0062
M. Saidi, H. Kadkhodayan
{"title":"Experimental and simulation assessment to mitigate the emission of sulfide toxic gases and removing main impurities from Zn + Pb + Cu recovery plants","authors":"M. Saidi, H. Kadkhodayan","doi":"10.1515/cppm-2021-0062","DOIUrl":"https://doi.org/10.1515/cppm-2021-0062","url":null,"abstract":"Abstract An integrated novel approach employing the Taguchi method and Aspen Plus software has been applied to evaluate a new configuration for the industrial process of Zn + Pb + Cu recovery from sphalerite ore, in order to minimize the toxic gas emission. The optimum operating condition achieved by the Taguchi method has been used as initial data for the process simulation. The impact of operating parameters on the process performance is considered. The optimum condition for the conversion of sulfide toxic gases to H2SO4 have been found to be: acid concentration of 0.867 mol/L, reaction temperature of 120 °C, stirring speed of 400 rpm, leaching time of 120 min, sulfide ore particle size of 0.01 mm; solid-to-liquid ratio of 30 wt%, additives amount of 50 kg/ton and oxygen pressure of 200 psi. Under optimum condition, H2SO4 production from sulfide toxic gases is 99%, the removal percentage of Fe, Co, Mn, Ni and Cd impurities is 99% and the recovery percentage of Zn + Pd + Cu is more than 97%.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"195 - 214"},"PeriodicalIF":0.9,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42543769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reducing total annual cost and CO2 emissions in batch distillation for separating ternary wide boiling mixtures using vapor recompression heat pump 蒸汽再压缩热泵分离三元宽沸混合物间歇蒸馏降低年总成本和CO2排放
IF 0.9
Chemical Product and Process Modeling Pub Date : 2022-01-06 DOI: 10.1515/cppm-2021-0057
Radhika Gandu, Akash Kumar Burolia, S. R. Ambati, Uday Bhaskar Babu Gara
{"title":"Reducing total annual cost and CO2 emissions in batch distillation for separating ternary wide boiling mixtures using vapor recompression heat pump","authors":"Radhika Gandu, Akash Kumar Burolia, S. R. Ambati, Uday Bhaskar Babu Gara","doi":"10.1515/cppm-2021-0057","DOIUrl":"https://doi.org/10.1515/cppm-2021-0057","url":null,"abstract":"Abstract This paper presents cost-effective heat pump assisted vapor recompression (VRC) design algorithms for the separation of ternary wide boiling mixture in batch distillation in order to reduce total annual cost (TAC) and carbon dioxide (CO2) emissions. A minimum TAC and CO2 is required by the batch distillation process industry for any investments in heat integrated systems, such as VRC. Consequently, the design conditions for implementing VRC should be chosen such that the energetic performance is maximum at minimum TAC. The model system selected in this paper is an application involving high temperature lift, that is, hexanol–octanol–decanol ternary wide boiling mixture. First, a systematic simulation algorithm was developed for conventional multicomponent batch distillation (CMBD) and single-stage vapor recompressed multicomponent batch distillation (SiVRMBD) to determine the optimal number of stages based on the maximum TAC savings. The SiVRMBD saves more energy and TAC than CMBD. However, SiVRMBD has a high compression ratio (CR) throughout the operation, which is not practically feasible for the batch distillation processing. Second, in order to increase the performance and minimize the SiVRMBD weakness, a novel optimal multi-stage vapor recompression algorithm was proposed to operate at the lowest possible CR (<3.5) throughout the batch operation while also conserving the most TAC. Overall, the findings suggest that the proposed optimal multi-stage VRC reduces TAC and CO2 emissions significantly when compared to CMBD. Finally, the influence of the different feed compositions on VRC performance is also studied.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"177 - 194"},"PeriodicalIF":0.9,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42520984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-saving investigation of vacuum reactive distillation for the production of ethyl acetate 真空反应精馏生产乙酸乙酯的节能研究
IF 0.9
Chemical Product and Process Modeling Pub Date : 2022-01-05 DOI: 10.1515/cppm-2021-0060
G. Patil, N. Gnanasundaram
{"title":"Energy-saving investigation of vacuum reactive distillation for the production of ethyl acetate","authors":"G. Patil, N. Gnanasundaram","doi":"10.1515/cppm-2021-0060","DOIUrl":"https://doi.org/10.1515/cppm-2021-0060","url":null,"abstract":"Abstract Ethyl acetate (EtAc) reactive distillation (RD) configurations often use atmospheric pressure, and this operating pressure can be reduced further to conserve energy based on the condenser cooling water temperature. Using the Aspen Plus simulator, two proposed configurations, RD column with stripper and pressure swing reactive distillation (PSRD), were simulated at lower operating pressure. The impact of RD column operating pressure on total energy usage and total annual cost (TAC) was studied. All design parameters were optimized using sequential iterative optimization procedures and sensitivity analysis to minimize the energy cost while maintaining the required product purity at 99.99%. The simulation results showed that the RD column with a stripper is better than PSRD with a saving of 23.17% in TAC and 31.53% in the specific cost of EtAc per kg. Compared to literature results, the proposed configurations have lower reboiler duty requirements and lower cost per kg of EtAc.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"155 - 176"},"PeriodicalIF":0.9,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44277472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A machine-learning reduced kinetic model for H2S thermal conversion process H2S热转化过程的机器学习简化动力学模型
IF 0.9
Chemical Product and Process Modeling Pub Date : 2021-12-10 DOI: 10.1515/cppm-2021-0044
A. Dell’Angelo, E. M. Andoglu, S. Kaytakoğlu, F. Manenti
{"title":"A machine-learning reduced kinetic model for H2S thermal conversion process","authors":"A. Dell’Angelo, E. M. Andoglu, S. Kaytakoğlu, F. Manenti","doi":"10.1515/cppm-2021-0044","DOIUrl":"https://doi.org/10.1515/cppm-2021-0044","url":null,"abstract":"Abstract H2S is becoming more and more appealing as a source for hydrogen and syngas generation. Its hydrogen production potential is studied by several research groups by means of catalytic and thermal conversions. While the characterization of catalytic processes is strictly dependent on the catalyst adopted and difficult to be generalized, the characterization of thermal processes can be brought back to wide-range validity kinetic models thanks to their homogeneous reaction environments. The present paper is aimed at providing a reduced kinetic scheme for reliable thermal conversion of H2S molecule in pyrolysis and partial oxidation thermal processes. The proposed model consists of 10 reactions and 12 molecular species. Its validation is performed by numerical comparisons with a detailed kinetic model already validated by literature/industrial data at the operating conditions of interest. The validated reduced model could be easily adopted in commercial process simulators for the flow sheeting of H2S conversion processes.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"117 - 133"},"PeriodicalIF":0.9,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42286925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design strategies for oxy-combustion power plant captured CO2 purification 全氧燃烧电厂捕集二氧化碳净化设计策略
IF 0.9
Chemical Product and Process Modeling Pub Date : 2021-12-08 DOI: 10.1515/cppm-2021-0041
Ikenna J. Okeke, Tia Ghantous, Thomas A. Adams
{"title":"Design strategies for oxy-combustion power plant captured CO2 purification","authors":"Ikenna J. Okeke, Tia Ghantous, Thomas A. Adams","doi":"10.1515/cppm-2021-0041","DOIUrl":"https://doi.org/10.1515/cppm-2021-0041","url":null,"abstract":"Abstract This study presents a novel design and techno-economic analysis of processes for the purification of captured CO2 from the flue gas of an oxy-combustion power plant fueled by petroleum coke. Four candidate process designs were analyzed in terms of GHG emissions, thermal efficiency, pipeline CO2 purity, CO2 capture rate, levelized costs of electricity, and cost of CO2 avoided. The candidates were a classic process with flue-gas water removal via condensation, flue-gas water removal via condensation followed by flue-gas oxygen removal through cryogenic distillation, flue-gas water removal followed by catalytic conversion of oxygen in the flue gas to water via reaction with hydrogen, and oxy-combustion in a slightly oxygen-deprived environment with flue-gas water removal and no need for flue gas oxygen removal. The former two were studied in prior works and the latter two concepts are new to this work. The eco-technoeconomic analysis results indicated trade-offs between the four options in terms of cost, efficiency, lifecycle greenhouse gas emissions, costs of CO2 avoided, technical readiness, and captured CO2 quality. The slightly oxygen-deprived process has the lowest costs of CO2 avoided, but requires tolerance of a small amount of H2, CO, and light hydrocarbons in the captured CO2 which may or may not be feasible depending on the CO2 end use. If infeasible, the catalytic de-oxygenation process is the next best choice. Overall, this work is the first study to perform eco-technoeconomic analyses of different techniques for O2 removal from CO2 captured from an oxy-combustion power plant.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"135 - 154"},"PeriodicalIF":0.9,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47006006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信