{"title":"CPPM special issue in honour of Emeritus Professor W.Y. “Bill” Svrcek","authors":"B. Young, R. Bozorgmehry","doi":"10.1515/cppm-2021-0042","DOIUrl":"https://doi.org/10.1515/cppm-2021-0042","url":null,"abstract":"","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"309 - 313"},"PeriodicalIF":0.9,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41813520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling of lime production process using artificial neural network","authors":"Abolghasem Daeichian, Rana Shahramfar, Elham Heidari","doi":"10.1515/cppm-2021-0032","DOIUrl":"https://doi.org/10.1515/cppm-2021-0032","url":null,"abstract":"Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"655 - 667"},"PeriodicalIF":0.9,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cppm-2021-0032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47287267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control of TITO processes using sliding mode controller tuned by ITAE minimizing criterion based Nelder-Mead algorithm","authors":"Govinda Kumar E, A. J.","doi":"10.1515/cppm-2020-0120","DOIUrl":"https://doi.org/10.1515/cppm-2020-0120","url":null,"abstract":"Abstract Control of multi input and multi output (MIMO) process with interaction is often encountered in process industry. Such MIMO processes are controlled using conventional sliding mode controller (SMC) and tuned by integral square error (ISE) minimizing criterion based Nelder-Mead algorithm. SMC tuned by integral time absolute error (ITAE) minimization criterion based Nelder-Mead algorithm is proposed in this work. Three categories of two inputs and two outputs (TITO) process models are represented in the matrix form, with each of the matrix element representing a first order plus dead time (FOPDT) process. These TITO models are categorized based on the ratio ε, between dead time and time constant of the FOPDT model which forms the matrix element of the TITO model. The performance of conventional SMC is evaluated for these three categories of TITO models, in which the TITO process models with the ratio ε greater than the one, exhibited by poor closed loop performance, whereas the proposed SMC when applied to the these process models delivered superior closed loop performance.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"669 - 680"},"PeriodicalIF":0.9,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cppm-2020-0120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41388128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Golubyatnikov, E. Akulinin, S. Dvoretsky, D. Dvoretsky
{"title":"To the problem of forming the equation system for pressure swing adsorption mathematical model","authors":"O. Golubyatnikov, E. Akulinin, S. Dvoretsky, D. Dvoretsky","doi":"10.1515/cppm-2021-0008","DOIUrl":"https://doi.org/10.1515/cppm-2021-0008","url":null,"abstract":"Abstract The complexity of the pressure swing adsorption (PSA) mathematical model, the need for its multiple calculations to reach the cyclic steady state and a large number of functional dependencies lead to unstable numerical circuits, physically unrealistic oscillations in adsorption profiles, an increase in the calculation time, and the failure of the solver. The paper proposes an approach to optimizing the calculation process, which consists in finding a reasonable balance between the completeness of the PSA mathematical model and the accuracy of the results obtained. The effectiveness of the approach is demonstrated on the example of air oxygen enrichment and hydrogen recovery from synthesis gas. The gas separation processes were simulated for the two-adsorber PSA unit with a granulated 13X adsorbent. The effect of the changes in the model coefficients on its accuracy in the operating range of input variables is investigated. A distinctive feature of this study is the recommendations for choosing a set of the model equations to calculate the PSA processes which are particularly relevant when solving optimization problems with uncertainty. The productivity, cycle duration, the diameter of the adsorbent particles and the flow rate, at which it is advisable to use the isothermal and external diffusion reduced PSA model in the calculations, are established, which will save at least 24.3 and 47.1% of the CPU time with a small loss in accuracy. The proposed approach can be used to form a set of equations for the PSA, rPSA, ultra rPSA, VSA, VPSA models, separation of various gas mixtures on various adsorbents.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"681 - 699"},"PeriodicalIF":0.9,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47291008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel LSSVM-L Hammerstein model structure for system identification and nonlinear model predictive control of CSTR servo and regulatory control","authors":"A. Naregalkar, Subbulekshmi Durairaj","doi":"10.1515/cppm-2021-0020","DOIUrl":"https://doi.org/10.1515/cppm-2021-0020","url":null,"abstract":"Abstract A continuous stirred tank reactor (CSTR) servo and the regulatory control problem are challenging because of their highly non-linear nature, frequent changes in operating points, and frequent disturbances. System identification is one of the important steps in the CSTR model-based control design. In earlier work, a non-linear system model comprises a linear subsystem followed by static nonlinearities and represented with Laguerre filters followed by the LSSVM (least squares support vector machines). This model structure solves linear dynamics first and then associated nonlinearities. Unlike earlier works, the proposed LSSVM-L (least squares support vector machines and Laguerre filters) Hammerstein model structure solves the nonlinearities associated with the non-linear system first and then linear dynamics. Thus, the proposed Hammerstein’s model structure deals with the nonlinearities before affecting the entire system, decreasing the model complexity and providing a simple model structure. This new Hammerstein model is stable, precise, and simple to implement and provides the CSTR model with a good model fit%. Simulation studies illustrate the benefit and effectiveness of the proposed LSSVM-L Hammerstein model and its efficacy as a non-linear model predictive controller for the servo and regulatory control problem.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"619 - 635"},"PeriodicalIF":0.9,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cppm-2021-0020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46376409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Kumar, Shishir Sinha, Shashi Kumar, Surendra Kumar
{"title":"Energy and exergy optimization of oxidative steam reforming of acetone–butanol–ethanol–water mixture as a renewable source for H2 production via thermodynamic modeling","authors":"B. Kumar, Shishir Sinha, Shashi Kumar, Surendra Kumar","doi":"10.1515/cppm-2020-0116","DOIUrl":"https://doi.org/10.1515/cppm-2020-0116","url":null,"abstract":"Abstract Acetone–butanol–ethanol–water mixture is obtained by fermentation of biomass namely, corncob, wheat straw, sugarbeets, sugarcane, etc. For using the individual components, one alternative is to separate the mixture by distillation, which is costly and energy intensive operation. This paper proposes its other use in available conditions to produce hydrogen fuel by oxidative steam reforming process. For the proposed process, thermodynamic equilibrium modeling has been performed by using non-stoichiometric approach of Gibbs free energy minimization. The compositions of acetone, butanol and ethanol in mixture are 0.33:0.52:0.15 on molar basis. The influence of pressure (1–10 atm), temperature (573–1473 K), steam to ABE mixture molar feed ratio (FABE = 5.5–8.5), and oxygen to ABE mixture molar feed ratio (FOABE = 0.25–1) have been tested by simulations on the yield of products (at equilibrium) namely, H2, CH4, CO2, CO, and carbon as solid. The optimum conditions for maximum production of desired H2, minimization of undesired CH4, and elimination of carbon (solid) formation are T = 973 K, P = 1 atm, FABE = 8.5, and FOABE = 0.25. Under same operating conditions, the maximum generation of H2 is 7.51 on molar basis with negligible carbon formation. The total energy requirement for the process (295.73 kJ/mol), the energy required/mol of hydrogen (39.37 kJ), and thermal efficiency (68.09%) of the reformer have been obtained at same operating conditions. The exergy analysis has also been investigated to measure the work potential of the energy implied in the reforming process.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"603 - 618"},"PeriodicalIF":0.9,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44580858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Solovev, O. Soloveva, D. L. Paluku, A. Lamberov
{"title":"CFD simulation of the ethylbenzene dehydrogenation reaction in the fixed bed reactor with a cylindrical catalyst of various sizes","authors":"S. Solovev, O. Soloveva, D. L. Paluku, A. Lamberov","doi":"10.1515/cppm-2021-0002","DOIUrl":"https://doi.org/10.1515/cppm-2021-0002","url":null,"abstract":"Abstract In this paper, the Discrete Element Method of simulation was used to study the catalytic granule size effect on the efficiency of a bed reactor for the ethylbenzene dehydrogenation reaction. The model constructed for the laboratory experiment was made of catalyst granules of lengths 3, 6 and 9 mm, and diameters 2.8, 3, and 3.2 mm. A detailed evaluation of the catalyst total surface area and porosity effect was conducted owing to the analysis of particles size effect on the packing. Different results were observed for a wide feed gas mixture rate. Calculations performed allowed to deduce dependences of the reaction product concentration, the pressure drops, and the reactor productivity for all the particle sizes investigated.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"583 - 602"},"PeriodicalIF":0.9,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46175903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Emamian, H. Azizpour, H. Moradi, K. Keynejad, H. Bahmanyar, Z. Nasrollahi
{"title":"Performance of molecular dynamics simulation for predicting of solvation free energy of neutral solutes in methanol","authors":"M. Emamian, H. Azizpour, H. Moradi, K. Keynejad, H. Bahmanyar, Z. Nasrollahi","doi":"10.1515/cppm-2021-0014","DOIUrl":"https://doi.org/10.1515/cppm-2021-0014","url":null,"abstract":"Abstract In this study, molecular dynamics simulation was applied for calculating solvation free energy of 16 solute molecules in methanol solvent. The thermodynamic integration method was used because it was possible to calculate the difference in free energy in any thermodynamic path. After comparing results for solvation free energy in different force fields, COMPASS force field was selected since it had the lowest error compared to experimental result. Group-based summation method was used to compute electrostatic and van der Waals forces at 298.15 K and 1 atm. The results of solvation free energy were obtained from molecular dynamics simulation and were compared to the results from Solvation Model Density (SMD) and Universal Continuum Solvation Model (denoted as SM8), which were obtained from other research works. Average square-root-error for molecular dynamics simulation, SMD and SM8 models were 0.096091, 0.595798, and 0.70649. Furthermore, the coefficient of determination (R2) for molecular dynamics simulation was 0.9618, which shows higher accuracy of MD simulation for calculating solvation free energy comparing to two other models.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"489 - 497"},"PeriodicalIF":0.9,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47394515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Murphree vapor efficiency prediction in SCC columns by computational fluid dynamics analysis","authors":"M. Zivdar, Nasim Shahrouei","doi":"10.1515/cppm-2020-0091","DOIUrl":"https://doi.org/10.1515/cppm-2020-0091","url":null,"abstract":"Abstract The spinning cone columns (SCC) are one of the distillation columns with increasing applications in food industries. The geometrical complexity and different flow regimes, besides the presence of moving parts, make the design and analysis of these columns challenging. Computational fluid dynamics analysis of SCC columns has shown promising results in analyzing the performance of these towers. The majority of previous works were pertinent to the air/water systems. Therefore, the application of these results to real systems is not very clear. In this study, the liquid film thickness, mass transfer coefficients, HETP, and Murphree vapor efficiency for the water/ethanol system have been predicted in a pilot-scale column. The results show that by increasing the radial distance from the axis, the thickness of the liquid film gradually decreases. This finding is also in consistent with the experimental results. The maximum thickness of the liquid film is <1 mm and is near the axis. Mass transfer coefficients in the liquid phase and in the gas phase increase slightly with increasing flow velocity and remain almost unchanged. The average values of these coefficients in the liquid and gas phases are 0.023 (s−1) and 1.21 (s−1), respectively. HETP increased with increasing gas velocity, the range of which varies between 0.092 and 0.375 m. Also, Murphree vapor efficiency at three rotational speeds of 550, 750, and 1000 rpm are predicted and compared with the experimental data. The results show that the efficiency has been decreased by increasing the strip ratio and increased by increasing the rotational speed. Minimum and maximum efficiencies obtained are 3.48 and 24.56% corresponding to strip ratio = 27.1% and RPM = 550 plus strip ratio = 9.15% and RPM = 1000, respectively. The predicted efficiencies are in a reasonable agreement (within 10.3%) with experimental data.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"273 - 292"},"PeriodicalIF":0.9,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66934153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation the effect of the ambient temperature on the liquid petroleum gas transportation pipeline","authors":"A. Abd, S. Naji, C. Tye, M. Othman","doi":"10.1515/cppm-2021-0024","DOIUrl":"https://doi.org/10.1515/cppm-2021-0024","url":null,"abstract":"Abstract Liquefied petroleum gas (LPG) plays a major role in worldwide energy consumption as a clean source of energy with low greenhouse gases emission. LPG transportation is exhibited through networks of pipelines, maritime, and tracks. LPG transmission using pipeline is environmentally friendly owing to the low greenhouse gases emission and low energy requirements. This work is a comprehensive evaluation of transportation petroleum gas in liquid state and compressible liquid state concerning LPG density, temperature and pressure, flow velocity, and pump energy consumption under the impact of different ambient temperatures. Inevitably, the pipeline surface exchanges heat between LPG and surrounding soil owing to the temperature difference and change in elevation. To prevent phase change, it is important to pay attention for several parameters such as ambient temperature, thermal conductivity of pipeline materials, soil type, and change in elevation for safe, reliable, and economic transportation. Transporting LPG at high pressure requests smaller pipeline size and consumes less energy for pumps due to its higher density. Also, LPG transportation under moderate or low pressure is more likely exposed to phase change, thus more thermal insulation and pressure boosting stations required to maintain the phase envelope. The models developed in this work aim to advance the existing knowledge and serve as a guide for efficient design by underling the importance of the mentioned parameters.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"479 - 488"},"PeriodicalIF":0.9,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cppm-2021-0024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43080945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}