受侧向或角向加热的开腔内自然对流与表面辐射耦合的数值研究

IF 1 Q4 ENGINEERING, CHEMICAL
Z. Charqui, M. Boukendil, L. El moutaouakil, Z. Zrikem, A. Abdelbaki
{"title":"受侧向或角向加热的开腔内自然对流与表面辐射耦合的数值研究","authors":"Z. Charqui, M. Boukendil, L. El moutaouakil, Z. Zrikem, A. Abdelbaki","doi":"10.1515/cppm-2020-0056","DOIUrl":null,"url":null,"abstract":"Abstract The present study reports numerical results of coupled heat transfer by natural convection and surface radiation in an open air-filled cavity. Two heating modes are considered; in the first mode called LH (lateral heating), the cavity is heated via its lateral wall, while in the second mode named CH (corner heating), the cavity is heated via its bottom corner (the lower half of the vertical wall and the left half of the bottom wall). The rest of the walls are assumed to be perfectly adiabatic. The conservation equations were solved using the Finite Volume Method (FVM) combined with the SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equations). The radiation heat transfer between the different surfaces of the cavity was treated by the radiosity-irradiation method. Results are presented in terms of isotherms, streamlines, and Nusselt numbers. The effect of the Rayleigh number Ra on the flow structure, the distribution of temperature gradients, the local and mean Nusselt numbers is discussed. Also, a comparison between results of the two heating modes is conducted.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"235 - 254"},"PeriodicalIF":1.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of coupled natural convection to surface radiation in an open cavity submitted to lateral or corner heating\",\"authors\":\"Z. Charqui, M. Boukendil, L. El moutaouakil, Z. Zrikem, A. Abdelbaki\",\"doi\":\"10.1515/cppm-2020-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present study reports numerical results of coupled heat transfer by natural convection and surface radiation in an open air-filled cavity. Two heating modes are considered; in the first mode called LH (lateral heating), the cavity is heated via its lateral wall, while in the second mode named CH (corner heating), the cavity is heated via its bottom corner (the lower half of the vertical wall and the left half of the bottom wall). The rest of the walls are assumed to be perfectly adiabatic. The conservation equations were solved using the Finite Volume Method (FVM) combined with the SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equations). The radiation heat transfer between the different surfaces of the cavity was treated by the radiosity-irradiation method. Results are presented in terms of isotherms, streamlines, and Nusselt numbers. The effect of the Rayleigh number Ra on the flow structure, the distribution of temperature gradients, the local and mean Nusselt numbers is discussed. Also, a comparison between results of the two heating modes is conducted.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":\"17 1\",\"pages\":\"235 - 254\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2020-0056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2020-0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文报道了露天空腔内自然对流与表面辐射耦合换热的数值结果。考虑了两种加热模式;在第一种模式下,称为LH(侧向加热),腔体通过其侧壁加热,而在第二种模式下,称为CH(角加热),腔体通过其底部角(垂直壁的下半部分和底部壁的左半部分)加热。其余的壁假定是完全绝热的。采用有限体积法(FVM)结合SIMPLE算法(压力链接方程半隐式方法)求解守恒方程。采用辐射辐照法处理腔体不同表面之间的辐射换热问题。结果以等温线、流线和努塞尔数的形式呈现。讨论了瑞利数Ra对流动结构、温度梯度分布、局部努塞尔数和平均努塞尔数的影响。并对两种加热方式的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical study of coupled natural convection to surface radiation in an open cavity submitted to lateral or corner heating
Abstract The present study reports numerical results of coupled heat transfer by natural convection and surface radiation in an open air-filled cavity. Two heating modes are considered; in the first mode called LH (lateral heating), the cavity is heated via its lateral wall, while in the second mode named CH (corner heating), the cavity is heated via its bottom corner (the lower half of the vertical wall and the left half of the bottom wall). The rest of the walls are assumed to be perfectly adiabatic. The conservation equations were solved using the Finite Volume Method (FVM) combined with the SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equations). The radiation heat transfer between the different surfaces of the cavity was treated by the radiosity-irradiation method. Results are presented in terms of isotherms, streamlines, and Nusselt numbers. The effect of the Rayleigh number Ra on the flow structure, the distribution of temperature gradients, the local and mean Nusselt numbers is discussed. Also, a comparison between results of the two heating modes is conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信