{"title":"阿萨巴斯卡沥青焦化感应区边缘热裂过程模型","authors":"D. Remesat","doi":"10.1515/cppm-2021-0033","DOIUrl":null,"url":null,"abstract":"Abstract Athabasca bitumen is an abundant resource that has successfully been upgraded using delayed coking that typically operates at 499 °C (∼930 °F), 207 kPa (∼37 psig), 1–2 min residence time on this type of crude. With society’s desire to reduce industry environmental impact while still providing energy to earth’s growing population, lower energy intensive (and thus lower greenhouse gas emissions) bitumen conversion approaches have been researched and are moving towards commercialization. The paper reviews a correlative model developed on a novel thermal cracking process, operated at lower temperatures (395–405 °C (743–761 °F)), lower pressures (<69 kPa (∼<10 psig) and up to 1 h residence time versus delayed coking, that takes various lab and pilot data, both batch and continuous, as inputs into developing the model. The purpose of the model is for use in industrial operations to provide guidance to operations for representative thermal cracker performance. The model is based on the Arrhenius equation using first order reaction kinetics for easy comprehension and use in an operational environment. Data for developing the model has been taken from various literature sources in the area of study, notably by researchers, Dr. W. Svrcek, Dr. Wiehe, Dr. Mehrotra, and Dr. Yarranton. The public data is used to create a viable range of performance that includes proprietary developments with the novel thermal cracking process. The model is configured on a mass basis so that mass balance closure can be readily calculated. A range of kinetic coefficients are provided that can be used to fit commercial plant performance based on the expected range of product outputs noted in the paper.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"379 - 394"},"PeriodicalIF":1.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process model correlating Athabasca bitumen thermally cracked at edge of coking induction zone\",\"authors\":\"D. Remesat\",\"doi\":\"10.1515/cppm-2021-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Athabasca bitumen is an abundant resource that has successfully been upgraded using delayed coking that typically operates at 499 °C (∼930 °F), 207 kPa (∼37 psig), 1–2 min residence time on this type of crude. With society’s desire to reduce industry environmental impact while still providing energy to earth’s growing population, lower energy intensive (and thus lower greenhouse gas emissions) bitumen conversion approaches have been researched and are moving towards commercialization. The paper reviews a correlative model developed on a novel thermal cracking process, operated at lower temperatures (395–405 °C (743–761 °F)), lower pressures (<69 kPa (∼<10 psig) and up to 1 h residence time versus delayed coking, that takes various lab and pilot data, both batch and continuous, as inputs into developing the model. The purpose of the model is for use in industrial operations to provide guidance to operations for representative thermal cracker performance. The model is based on the Arrhenius equation using first order reaction kinetics for easy comprehension and use in an operational environment. Data for developing the model has been taken from various literature sources in the area of study, notably by researchers, Dr. W. Svrcek, Dr. Wiehe, Dr. Mehrotra, and Dr. Yarranton. The public data is used to create a viable range of performance that includes proprietary developments with the novel thermal cracking process. The model is configured on a mass basis so that mass balance closure can be readily calculated. A range of kinetic coefficients are provided that can be used to fit commercial plant performance based on the expected range of product outputs noted in the paper.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":\"17 1\",\"pages\":\"379 - 394\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2021-0033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2021-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Process model correlating Athabasca bitumen thermally cracked at edge of coking induction zone
Abstract Athabasca bitumen is an abundant resource that has successfully been upgraded using delayed coking that typically operates at 499 °C (∼930 °F), 207 kPa (∼37 psig), 1–2 min residence time on this type of crude. With society’s desire to reduce industry environmental impact while still providing energy to earth’s growing population, lower energy intensive (and thus lower greenhouse gas emissions) bitumen conversion approaches have been researched and are moving towards commercialization. The paper reviews a correlative model developed on a novel thermal cracking process, operated at lower temperatures (395–405 °C (743–761 °F)), lower pressures (<69 kPa (∼<10 psig) and up to 1 h residence time versus delayed coking, that takes various lab and pilot data, both batch and continuous, as inputs into developing the model. The purpose of the model is for use in industrial operations to provide guidance to operations for representative thermal cracker performance. The model is based on the Arrhenius equation using first order reaction kinetics for easy comprehension and use in an operational environment. Data for developing the model has been taken from various literature sources in the area of study, notably by researchers, Dr. W. Svrcek, Dr. Wiehe, Dr. Mehrotra, and Dr. Yarranton. The public data is used to create a viable range of performance that includes proprietary developments with the novel thermal cracking process. The model is configured on a mass basis so that mass balance closure can be readily calculated. A range of kinetic coefficients are provided that can be used to fit commercial plant performance based on the expected range of product outputs noted in the paper.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.