Photochemical & Photobiological Sciences最新文献

筛选
英文 中文
A colorimetric and ratiometric fluorescent probe of hypochlorous acid and its bio-imaging application. 次氯酸比色比比荧光探针及其生物成像应用。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2024-12-20 DOI: 10.1007/s43630-024-00672-w
Yumiao Sheng, Kedian Xu, Zhenzhen Wang, Yunling Gao
{"title":"A colorimetric and ratiometric fluorescent probe of hypochlorous acid and its bio-imaging application.","authors":"Yumiao Sheng, Kedian Xu, Zhenzhen Wang, Yunling Gao","doi":"10.1007/s43630-024-00672-w","DOIUrl":"10.1007/s43630-024-00672-w","url":null,"abstract":"<p><p>A new ratiometric and colorimetric fluorescent probe HTD was synthesized based on the reaction of 4-aminophenyl boronic acid pinacol ester and 4-(3-formyl-4-hydroxyphenyl) benzonitrile. The probe exhibited a unique fluorescence response to hypochlorous acid and had good anti-interference performance in the presence of other interference. When HTD met the NaClO, the light orange fluorescence was changed to green with the blue-shifted emission wavelength from 550 to 500 nm. Moreover, the absorbance of HTD's UV-vis at 300 nm and 375 nm decreased in the presence of NaClO. The limit of detection was 1.83 × 10<sup>-7</sup> M and 2.96 × 10<sup>-6</sup> M based on the fluorescence and UV-vis titration data. NMR, HRMS, and IR spectra suggested that the possible sensing mechanism of HTD to NaClO was the formation of initial compound 4-(3-formyl-4-hydroxyphenyl) benzonitrile due to the oxidation of hypochlorous acid in aqueous solution. The portable test strips were obtained, and the real water sample test reached good results with spiking recoveries among 92.00% ~ 103.25%. Finally, endogenous hypochlorous acid produced by LPS and PMA was successfully detected by HTD in living mice using in situ fluorescence bioimaging.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"65-77"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer. 姜黄素包被氧化铁纳米粒子光动力治疗乳腺癌。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2025-01-22 DOI: 10.1007/s43630-025-00682-2
Virginia Rezende Ferreira, Aveline Ventura, Marcela Cândido, Juliana Ferreira-Strixino, Leandro Raniero
{"title":"Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer.","authors":"Virginia Rezende Ferreira, Aveline Ventura, Marcela Cândido, Juliana Ferreira-Strixino, Leandro Raniero","doi":"10.1007/s43630-025-00682-2","DOIUrl":"10.1007/s43630-025-00682-2","url":null,"abstract":"<p><p>Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects. In this way, the synthesis of IONPs (iron oxide nanoparticles) was carried out, and their subsequent coating was done with curcumin (IONPs@curcumin) so that they could act as therapeutic agents against breast cancer. Curcumin solubility tests were carried out to achieve the best results, with ethanol as a solvent, in different concentrations of ethanolic curcumin solution, with the optimal outcome observed at a concentration of 1 mM. Subsequently, the stability analysis was conducted by adjusting the pH of the medium, revealing that at pH 10, the IONPs@curcumin exhibited the best stability and dispersion conditions. Then, cytotoxicity tests of IONPs@curcumin were carried out on the MDA-MB-468 triple-negative breast cancer cell line, under experimental conditions without irradiation and subjected to PDT. The results revealed a viability greater than 70%, as it did not exhibit cytotoxicity for cells in the dark. After 1 h of incubation, the PDT associated with IONPs@curcumin showed 32% of cell viability at a concentration of 30 mg/mL.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"181-190"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two isoniazid-based chemosensors for the detection of cyanide ions in solution: an experimental and computational study. 两种用于检测溶液中氰化物离子的异烟肼化学传感器:实验和计算研究。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2024-12-15 DOI: 10.1007/s43630-024-00671-x
M N Zavalishin, A A Guschin, G A Nikitin, G A Gamov
{"title":"Two isoniazid-based chemosensors for the detection of cyanide ions in solution: an experimental and computational study.","authors":"M N Zavalishin, A A Guschin, G A Nikitin, G A Gamov","doi":"10.1007/s43630-024-00671-x","DOIUrl":"10.1007/s43630-024-00671-x","url":null,"abstract":"<p><p>Colorimetric chemosensors L<sub>1</sub> and L<sub>2</sub>, based on isoniazid hydrazones, have been designed for the highly sensitive and selective recognition of CN<sup>-</sup> ion. Competing experiments were conducted with various other anions such as F<sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, SCN<sup>-</sup>, ClO<sub>3</sub><sup>-</sup>, ClO<sub>4</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, H<sub>2</sub>PO<sub>4</sub><sup>-</sup>, SO<sub>3</sub><sup>2-</sup>, and HSO<sub>4</sub><sup>-</sup> in an acetonitrile solution. In the UV-Vis spectra, a bathochromic shift in the absorption bands of both hydrazones was observed following the addition of cyanide. These spectral changes were accompanied by a color transition from transparent to orange for L<sub>1</sub> and from pale yellow to peach for L<sub>2</sub>, which is attributed to the deprotonation of the chemosensors. The detection limits for cyanide ions were determined to be 0.36 µM for L<sub>1</sub> and 2.79 µM for L<sub>2</sub> using the 3σ rule. Quantum chemical calculations were employed to optimize the structure of the chemosensors, compute their UV-Vis spectra, and confirm the proposed detection mechanism for CN⁻ ions.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"53-63"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyanine dye-embedded fluorescent film for ratiometric pH measurement. 比例pH测量用菁染料包埋荧光膜。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2025-01-21 DOI: 10.1007/s43630-025-00681-3
Roch Sobczyk, Laurent Galmiche, Cédric Mongin, Meriem Djendli, Isabelle Leray, Rachel Méallet
{"title":"Cyanine dye-embedded fluorescent film for ratiometric pH measurement.","authors":"Roch Sobczyk, Laurent Galmiche, Cédric Mongin, Meriem Djendli, Isabelle Leray, Rachel Méallet","doi":"10.1007/s43630-025-00681-3","DOIUrl":"10.1007/s43630-025-00681-3","url":null,"abstract":"<p><p>The precise monitoring of pH is critical in various applications, particularly in biology-related areas. In this work, we report the synthesis and characterization of a novel cyanine-based fluorescent pH sensor with a pK<sub>a</sub> around 6. This pH-sensitive dye features a cyanine chromophore coupled to a piperazine moiety, which modulates the protonation equilibrium and thus the optical response. DTF calculation corroborates the changes in the photophysical properties upon protonation. Upon immobilization within a hydrophilic polymer matrix, the resulting fluorescent sensor is exhibited a pK<sub>a</sub> around 4.5, facilitating ratiometric pH measurements for acidic media (for instance in food-examples given in milk and fresh yogurt). Importantly, this probe design allowed a less than 5 min response time to pH changes while avoiding cytotoxic effects towards E. coli. The development of such a fluorescent pH indicator is motivated by the growing need for optical monitoring tools capable of providing real-time, non-invasive readouts of pH dynamics in complex media and microfluidic systems.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"165-179"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction. 具有手性排列的各向同性等离子体粒子阵列在相干相互作用下的涡旋响应。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI: 10.1007/s43630-024-00667-7
Tomoya Oshikiri, Yasutaka Matsuo, Hiromasa Niinomi, Masaru Nakagawa
{"title":"Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction.","authors":"Tomoya Oshikiri, Yasutaka Matsuo, Hiromasa Niinomi, Masaru Nakagawa","doi":"10.1007/s43630-024-00667-7","DOIUrl":"10.1007/s43630-024-00667-7","url":null,"abstract":"<p><p>The chirality and chiroptical response of materials have attracted significant attention for their potential to introduce the new science of light-matter interactions. We demonstrate that collective mode formation under modal coupling between localized surface plasmon resonances (LSPRs) with a chiral arrangement and Fabry-Pérot (FP) nanocavity modes can induce chiroptical responses. We fabricated a cluster of isotropic gold nanodisks with a chiral arrangement (gold nano-windmills, Au-NWs) on the FP nanocavities of TiO<sub>2</sub> and Au film. The differential absorption of the Au-NWs coupled with the FP nanocavities under left- and right-handed circularly polarized light irradiations in the far field was significantly enhanced compared with the differential absorption without the FP nanocavities. Far- and near-field analyses by numerical simulation revealed that the Au-NWs coupled with the FP nanocavities formed a collective mode in the near field, and the collective mode represented the chiroptical response in the far field. The light field with the large helicity, can be used in chiral light-matter interactions. The concept of collective mode formation using isotropic metal nanodisks coupled with FP nanocavities provides a platform for controlling complex light fields.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"13-21"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divulging the potency of naturally derived photosensitizers in green PDT: an inclusive review Of mechanisms, advantages, and future prospects. 揭示天然衍生光敏剂在绿色PDT中的效力:对机制,优势和未来前景的全面回顾。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI: 10.1007/s43630-024-00669-5
Muskan Gupta, Anwesha Sahu, Tuhin Mukherjee, Satyajit Mohanty, Priyamjeet Das, Nikita Nayak, Shivangi Kumari, Ravi Pratap Singh, Ashok Pattnaik
{"title":"Divulging the potency of naturally derived photosensitizers in green PDT: an inclusive review Of mechanisms, advantages, and future prospects.","authors":"Muskan Gupta, Anwesha Sahu, Tuhin Mukherjee, Satyajit Mohanty, Priyamjeet Das, Nikita Nayak, Shivangi Kumari, Ravi Pratap Singh, Ashok Pattnaik","doi":"10.1007/s43630-024-00669-5","DOIUrl":"10.1007/s43630-024-00669-5","url":null,"abstract":"<p><p>Photodynamic Therapy (PDT) offers a minimally invasive approach for treating various health conditions, employing a photosensitizer (PS) and specific light. Recent enhancements make PDT outpatient-friendly and less discomforting. Effectiveness hinges on selecting the appropriate PS. This article delves into natural and synthetic PSs, emphasizing the rising interest in natural alternatives for their safety. It explores their mechanisms, characteristics, and applications, offering insights into their potential contributions to advancing PDT. This extensive review delves into the preclinical and clinical landscape of natural PSs for PDT, shedding light on their diverse applications and promising outcomes. Compounds like curcumin, piperine, riboflavin, psoralen, hypericin, and others show significant potential in preclinical in vitro studies across various cell lines. In vivo, these photosensitizers prove effective against skin tumors, carcinomas, and sarcomas, inducing apoptosis, autophagy, and ROS generation for therapeutic efficacy. The review underscores the critical role of proper dosing and monitoring in balancing therapeutic benefits and risks. It highlights the advantages and limitations of natural PSs, emphasizing their specific targeting, bioavailability, and limited side effects. The future of PDT holds promising breakthroughs, taking from some evidence like Bergamot oil in nanostructured lipid carriers for dermatological conditions. Second-generation photosensitizer Tookad shows potential in prostate cancer treatment, while Tripterygium wilfordii Hook. F. emerges as an antimicrobial PDT source etc. Thus, environmental concerns in PDT prompt a shift to plant extracts for PS purification. The evidence-supported focus on natural PSs establishes this article as a key resource for advancing natural compounds in PDT and their therapeutic applications.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"191-214"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balance between photoreduction efficiency, cofactor affinity, and allosteric coupling of halogenase flavoenzymes. 卤素酶黄酶的光还原效率、辅因子亲和力和变构偶联之间的平衡。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2024-12-30 DOI: 10.1007/s43630-024-00670-y
Niklas Diepold, Friederike Reese, Tina Prior, Christian Schnepel, Norbert Sewald, Tilman Kottke
{"title":"Balance between photoreduction efficiency, cofactor affinity, and allosteric coupling of halogenase flavoenzymes.","authors":"Niklas Diepold, Friederike Reese, Tina Prior, Christian Schnepel, Norbert Sewald, Tilman Kottke","doi":"10.1007/s43630-024-00670-y","DOIUrl":"10.1007/s43630-024-00670-y","url":null,"abstract":"<p><p>Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH<sup>-</sup>) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH<sup>-</sup>. In vitro, FADH<sup>-</sup> can be regenerated by photoreduction of the oxidized FAD inside the protein using blue light, turning the halogenase into an inefficient artificial photoenzyme. We aimed to improve the photochemical properties of the tryptophan 5-halogenase PyrH from Streptomyces rugosporus by structure-guided mutagenesis. W279 and W281 of the conserved WxWxIP-motif close to FAD were exchanged against phenylalanine. Time-resolved UV-vis spectroscopy showed that the W281F exchange indeed increased the quantum yield of the one- and two-electron reduction, respectively. The cofactor binding affinity decreased slightly with dissociation constants rising from 31 to 74 μM, as examined by fluorescence anisotropy. FTIR difference spectroscopy demonstrated that the allosteric coupling between the FAD and substrate binding sites was mostly preserved. In contrast, the double mutant did not improve the yield further, while negatively affecting binding affinity and structural coupling. The distal W279F exchange was less effective in all parameters. Photoreductions were additionally delayed by a reversible inactive conformation. We conclude that there is a delicate balance to be considered for screening of FDHs for biocatalysis. Variant PyrH-W281F was found to be the most promising candidate for the application as artificial photoenzyme.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"37-51"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Twenty-first century surface UV radiation changes deduced from CMIP6 models. Part I: evolution of major influencing factors. 更正:根据CMIP6模式推断的21世纪地表紫外线辐射变化。第一部分:主要影响因素的演变。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 DOI: 10.1007/s43630-025-00685-z
A Chatzopoulou, K Tourpali, A F Bais, P Braesicke
{"title":"Correction: Twenty-first century surface UV radiation changes deduced from CMIP6 models. Part I: evolution of major influencing factors.","authors":"A Chatzopoulou, K Tourpali, A F Bais, P Braesicke","doi":"10.1007/s43630-025-00685-z","DOIUrl":"10.1007/s43630-025-00685-z","url":null,"abstract":"","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"111"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type I and Type II photosensitization of DNA etheno adducts. DNA乙二烯加合物的I型和II型光敏性。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2024-12-19 DOI: 10.1007/s43630-024-00663-x
Paloma Lizondo-Aranda, Gemma M Rodríguez-Muñiz, Miguel A Miranda, Belinda Heyne, Virginie Lhiaubet-Vallet
{"title":"Type I and Type II photosensitization of DNA etheno adducts.","authors":"Paloma Lizondo-Aranda, Gemma M Rodríguez-Muñiz, Miguel A Miranda, Belinda Heyne, Virginie Lhiaubet-Vallet","doi":"10.1007/s43630-024-00663-x","DOIUrl":"10.1007/s43630-024-00663-x","url":null,"abstract":"<p><p>Photophysical and photochemical studies were carried out to examine the photoreactivity of etheno adducts, 1,N<sup>6</sup>-ethenoadenine (εdA) and 1,N<sup>2</sup>-ethenoguanine (εdG), in the presence of two well-known photosensitizers acting by Type I and/or Type II mechanisms such as 4-carboxybenzophenone (CBP) and rose Bengal (RB), respectively. Steady-state photolysis experiments combined with HPLC and mass spectroscopy measurements lead to photoproducts that correspond to the repaired nucleosides. To determine the mechanism of this photooxidation processes, phosphorescence spectroscopy, direct detection of singlet oxygen luminescence and laser flash photolysis were carried out. This work establishes that εdG and εdA are sensitive to both types of processes (Type I and II).</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"1-12"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the modes of phototoxicity of NIR absorbing chlorophyll derivative in cancer cells under normoxic and hypoxic conditions. 揭示近红外吸收叶绿素衍生物在常氧和缺氧条件下对癌细胞的光毒性模式。
IF 2.7 3区 化学
Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2025-01-18 DOI: 10.1007/s43630-024-00680-w
Sucharita Chatterjee, Alok Dube, Shovan Kumar Majumder
{"title":"Unravelling the modes of phototoxicity of NIR absorbing chlorophyll derivative in cancer cells under normoxic and hypoxic conditions.","authors":"Sucharita Chatterjee, Alok Dube, Shovan Kumar Majumder","doi":"10.1007/s43630-024-00680-w","DOIUrl":"10.1007/s43630-024-00680-w","url":null,"abstract":"<p><p>The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions. PDT with CIPp-18 (2.0 µM, 3 h) and NIR light (700 ± 25 nm, 0.36-1.4 J /cm<sup>2</sup>) induced potent phototoxicity in both the cell lines. Under hypoxic conditions, PDT induced ~ 32% and 42% phototoxicity at LD<sub>50</sub> and LD<sub>70</sub> light dose, respectively, which corresponds to phototoxic dose under normoxia. CIPp-18 in neat buffer (pH 7.4) showed generation of singlet oxygen (<sup>1</sup>O<sub>2</sub>) as well as superoxide (O<sub>2</sub><sup>·-</sup>) radicals. Studies on ROS generation in cells using fluorescence probes and the effect of mechanistic probes of <sup>1</sup>O<sub>2 </sub>(Sodium Azide, Histidine, D<sub>2</sub>O) and free radicals (DMSO, Mannitol, Cyanocobalamin, SOD-PEG) on phototoxicity show that <sup>1</sup>O<sub>2</sub> plays major role in phototoxicity under normoxia. Whereas, under hypoxic conditions, PDT led to no significant generation of ROS and phototoxicity remained unaffected by cyanocobalamin, a quencher of O<sub>2</sub><sup>·-</sup>. Moreover, CIPp-18 showed localization in cell membrane and PDT led to more pronounced loss of membrane permeability in cells under hypoxia than for normoxia. These results demonstrate that CIPp-18 is suitable for PDT of cancer cells under hypoxia and also suggest that phototoxicity under hypoxia is mediated via ROS-independent contact-dependent mechanism.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"149-164"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信