How warming impacts the photosynthetic physiology of the bloom-forming cyanobacterium, Microcystis aeruginosa, under UV exposure.

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Menglin Bao, Yingze Yuan, Shasha Zang, Fang Yan, Zhiguang Xu, Hongyan Wu
{"title":"How warming impacts the photosynthetic physiology of the bloom-forming cyanobacterium, Microcystis aeruginosa, under UV exposure.","authors":"Menglin Bao, Yingze Yuan, Shasha Zang, Fang Yan, Zhiguang Xu, Hongyan Wu","doi":"10.1007/s43630-025-00705-y","DOIUrl":null,"url":null,"abstract":"<p><p>Microcystis aeruginosa is a common cyanobacterium leading to algal blooms. Coupled effects of temperature increase and UV radiation increase will affect its photosynthesis performance, which may in turn will affect its proliferation and distribution, and change the environmental health of the water body. In this study, M. aeruginosa FACHB 469 was incubated at 25 °C and 30 °C and subjected to photosynthetically active radiation (PAR) and UV radiation (PAR + UVR) to monitor the relevant physiological responses. Exposure to both PAR and PAR + UVR resulted in a decline in PSII maximum quantum yield of M. aeruginosa, with UVR having more significant inhibitory effect. Meanwhile, UVR significantly increased the PSII photoinactivation rate constant (K<sub>pi</sub>) and decreased the PSII repair rate constant (K<sub>rec</sub>), whereas the warming did not have a significant effect on it, and no significant interaction effect between warming and UVR was observed. Further analysis of the strategies of algal cells to cope with UVR at different temperatures revealed that at 25 °C, algal cells mainly relied on the repair cycle of PSII, and reduced the content of phycocyanin to lower light energy capture, and increased superoxide dismutase (SOD) and catalase (CAT) activities to alleviate the damage of UVR; whereas under warming conditions, algal cells, while relying on PSII repair, mainly photoprotect by strengthening the NPQ mechanism, thus improving their tolerance to UVR. These findings suggest that the differential strategies employed by M. aeruginosa to cope with UVR under varying temperature conditions may influence the resilience of cyanobacterial blooms to environmental stressors in the future.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-025-00705-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microcystis aeruginosa is a common cyanobacterium leading to algal blooms. Coupled effects of temperature increase and UV radiation increase will affect its photosynthesis performance, which may in turn will affect its proliferation and distribution, and change the environmental health of the water body. In this study, M. aeruginosa FACHB 469 was incubated at 25 °C and 30 °C and subjected to photosynthetically active radiation (PAR) and UV radiation (PAR + UVR) to monitor the relevant physiological responses. Exposure to both PAR and PAR + UVR resulted in a decline in PSII maximum quantum yield of M. aeruginosa, with UVR having more significant inhibitory effect. Meanwhile, UVR significantly increased the PSII photoinactivation rate constant (Kpi) and decreased the PSII repair rate constant (Krec), whereas the warming did not have a significant effect on it, and no significant interaction effect between warming and UVR was observed. Further analysis of the strategies of algal cells to cope with UVR at different temperatures revealed that at 25 °C, algal cells mainly relied on the repair cycle of PSII, and reduced the content of phycocyanin to lower light energy capture, and increased superoxide dismutase (SOD) and catalase (CAT) activities to alleviate the damage of UVR; whereas under warming conditions, algal cells, while relying on PSII repair, mainly photoprotect by strengthening the NPQ mechanism, thus improving their tolerance to UVR. These findings suggest that the differential strategies employed by M. aeruginosa to cope with UVR under varying temperature conditions may influence the resilience of cyanobacterial blooms to environmental stressors in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信