Baicalein prevents skin damage, tumorigenesis and tumor growth in chronic ultraviolet B-irradiated hairless mice.

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Photochemical & Photobiological Sciences Pub Date : 2025-03-01 Epub Date: 2025-03-17 DOI:10.1007/s43630-025-00700-3
Yoshiyuki Kimura, Maho Sumiyoshi, Masahiko Taniguchi
{"title":"Baicalein prevents skin damage, tumorigenesis and tumor growth in chronic ultraviolet B-irradiated hairless mice.","authors":"Yoshiyuki Kimura, Maho Sumiyoshi, Masahiko Taniguchi","doi":"10.1007/s43630-025-00700-3","DOIUrl":null,"url":null,"abstract":"<p><p>Non-melanoma skin cancer accounted for over one million new cases, according to the Global Cancer Statistics 2020 report. Moreover, UV radiation causes photodamage (skin inflammation and angiogenesis), photoaging (increases in skin wrinkle and reduction in skin elasticity). This study investigated the preventive effects of baicalein against skin damage, aging, tumorigenesis and tumor growth in long-term UVB irradiated hairless mice. Five-week-old male mice were divided into the following groups: a non-UVB group (control), vehicle-treated UVB group (UVB control), and UVB groups treated with two different doses of baicalein (10 and 30 mg/kg, twice daily). The mice were exposed to UVB irradiation (36-192 mJ/cm<sup>2</sup>) three times per week for 23 weeks. Baicalein was orally administered at the specified doses for the same duration. Skin cytokine, chemokine, and vascular endothelial growth factor (VEGF) levels were measured using ELISA kits. Baicalein (at doses of 10 and 30 mg/kg) suppressed UVB-induced increases in skin thickness, improved skin elasticity, and reduced the number and growth of skin tumors. Additionally, baicalein inhibited UVB-induced increases in IL-1β, IL-6, MCP-1, MIF, VEGF, p53, COX-2, total/phospho-NF-κB expression levels in the skin. Immunohistochemical analysis revealed that baicalein attenuated UVB-induced increases in the number of Ki-67-, and HIF-1α-positive cells. The preventive effects of baicalein on skin damage and skin tumor growth in chronically UVB-irradiated mice were associated with reduced skin cytokine levels through the down-regulation of COX-2, phosphorylated NF-κB p65, and HIF-1α expression.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"479-497"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-025-00700-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-melanoma skin cancer accounted for over one million new cases, according to the Global Cancer Statistics 2020 report. Moreover, UV radiation causes photodamage (skin inflammation and angiogenesis), photoaging (increases in skin wrinkle and reduction in skin elasticity). This study investigated the preventive effects of baicalein against skin damage, aging, tumorigenesis and tumor growth in long-term UVB irradiated hairless mice. Five-week-old male mice were divided into the following groups: a non-UVB group (control), vehicle-treated UVB group (UVB control), and UVB groups treated with two different doses of baicalein (10 and 30 mg/kg, twice daily). The mice were exposed to UVB irradiation (36-192 mJ/cm2) three times per week for 23 weeks. Baicalein was orally administered at the specified doses for the same duration. Skin cytokine, chemokine, and vascular endothelial growth factor (VEGF) levels were measured using ELISA kits. Baicalein (at doses of 10 and 30 mg/kg) suppressed UVB-induced increases in skin thickness, improved skin elasticity, and reduced the number and growth of skin tumors. Additionally, baicalein inhibited UVB-induced increases in IL-1β, IL-6, MCP-1, MIF, VEGF, p53, COX-2, total/phospho-NF-κB expression levels in the skin. Immunohistochemical analysis revealed that baicalein attenuated UVB-induced increases in the number of Ki-67-, and HIF-1α-positive cells. The preventive effects of baicalein on skin damage and skin tumor growth in chronically UVB-irradiated mice were associated with reduced skin cytokine levels through the down-regulation of COX-2, phosphorylated NF-κB p65, and HIF-1α expression.

黄芩素可防止慢性紫外线照射下无毛小鼠皮肤损伤、肿瘤发生和肿瘤生长。
根据《2020年全球癌症统计报告》,非黑色素瘤皮肤癌的新病例超过100万例。此外,紫外线辐射引起光损伤(皮肤炎症和血管生成),光老化(皮肤皱纹增加和皮肤弹性降低)。研究黄芩素对长期UVB照射的无毛小鼠皮肤损伤、衰老、肿瘤发生和肿瘤生长的预防作用。将5周大的雄性小鼠分为以下三组:非UVB组(对照组),UVB处理组(UVB对照组),UVB组用两种不同剂量的黄芩素(10和30 mg/kg,每天两次)处理。小鼠接受UVB照射(36-192 mJ/cm2),每周3次,持续23周。以规定剂量口服黄芩苷,持续时间相同。使用ELISA试剂盒检测皮肤细胞因子、趋化因子和血管内皮生长因子(VEGF)水平。黄芩素(剂量为10和30 mg/kg)抑制uvb诱导的皮肤厚度增加,改善皮肤弹性,减少皮肤肿瘤的数量和生长。此外,黄芩素还能抑制uvb诱导的皮肤中IL-1β、IL-6、MCP-1、MIF、VEGF、p53、COX-2、总/磷酸化nf -κB表达水平的升高。免疫组化分析显示黄芩素可减轻uvb诱导的Ki-67-和hif -1α-阳性细胞数量的增加。黄芩素对慢性uvb照射小鼠皮肤损伤和皮肤肿瘤生长的预防作用可能与下调COX-2、磷酸化NF-κB p65和HIF-1α表达降低皮肤细胞因子水平有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信