Cerebral Cortex (New York, NY)最新文献

筛选
英文 中文
Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters 睡眠剥夺和麻木对保加利亚仓鼠脑电图慢波特征的不同影响
Cerebral Cortex (New York, NY) Pub Date : 2017-02-01 DOI: 10.1093/cercor/bhx020
V. Vyazovskiy, S. Palchykova, Peter Achermann, I. Tobler, T. Deboer
{"title":"Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters","authors":"V. Vyazovskiy, S. Palchykova, Peter Achermann, I. Tobler, T. Deboer","doi":"10.1093/cercor/bhx020","DOIUrl":"https://doi.org/10.1093/cercor/bhx020","url":null,"abstract":"Abstract It has been shown previously in Djungarian hamsters that the initial electroencephalography (EEG) slow‐wave activity (power in the 0.5‐4.0 Hz band; SWA) in non‐rapid eye movement (NREM) sleep following an episode of daily torpor is consistently enhanced, similar to the SWA increase after sleep deprivation (SD). However, it is unknown whether the network mechanisms underlying the SWA increase after torpor and SD are similar. EEG slow waves recorded in the neocortex during sleep reflect synchronized transitions between periods of activity and silence among large neuronal populations. We therefore set out to investigate characteristics of individual cortical EEG slow waves recorded during NREM sleep after 4 h SD and during sleep after emergence from an episode of daily torpor in adult male Djungarian hamsters. We found that during the first hour after both SD and torpor, the SWA increase was associated with an increase in slow‐wave incidence and amplitude. However, the slopes of single slow waves during NREM sleep were steeper in the first hour after SD but not after torpor, and, in contrast to sleep after SD, the magnitude of change in slopes after torpor was unrelated to the changes in SWA. Furthermore, slow‐wave slopes decreased progressively within the first 2 h after SD, while a progressive increase in slow‐wave slopes was apparent during the first 2 h after torpor. The data suggest that prolonged waking and torpor have different effects on cortical network activity underlying slow‐wave characteristics, while resulting in a similar homeostatic sleep response of SWA. We suggest that sleep plays an important role in network homeostasis after both waking and torpor, consistent with a recovery function for both states.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"48 1","pages":"950 - 961"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88499048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
ADAM10-Initiated Release of Notch Intracellular Domain Regulates Microtubule Stability and Radial Migration of Cortical Neurons adam10启动的Notch胞内结构域释放调控皮层神经元微管稳定性和径向迁移
Cerebral Cortex (New York, NY) Pub Date : 2017-02-01 DOI: 10.1093/cercor/bhx006
Zhi Yang, Peng Li, Ren-Chao Chen, Jie Wang, Shaoran Wang, Ya Shen, Xiaohui Wu, B. Fang, Xuewen Cheng, Z. Xiong
{"title":"ADAM10-Initiated Release of Notch Intracellular Domain Regulates Microtubule Stability and Radial Migration of Cortical Neurons","authors":"Zhi Yang, Peng Li, Ren-Chao Chen, Jie Wang, Shaoran Wang, Ya Shen, Xiaohui Wu, B. Fang, Xuewen Cheng, Z. Xiong","doi":"10.1093/cercor/bhx006","DOIUrl":"https://doi.org/10.1093/cercor/bhx006","url":null,"abstract":"Abstract Proper neuronal migration is orchestrated by combined membrane signal paradigms, whereas the role and mechanism of regulated intramembrane proteolysis (RIP) remain to be illustrated. We show here that the disintegrin and metalloprotease‐domain containing protein 10 (ADAM10) regulates cortical neurons migration by initiating the RIP of Notch. We found that Notch intracellular domain (NICD) significantly rescued the migration defect of ADAM10‐deficient neurons. Moreover, ADAM10 deficiency led to reduced neuronal motility and disrupted microtubule (MT) structure, which were associated with downregulated expression of acetylated tubulin and MT‐associated proteins. Specifically, the NICD/RBPJ complex bound directly to the promoter, and regulated the neuronal expression level of doublecortin (DCX), a modulator of the MT cytoskeleton. Functionally, DCX overexpression largely restored neuron motility and reversed migration defect caused by ADAM10 knockout. Taken together, these findings demonstrate the direct requirement of ADAM10 in cortical radial migration and reveal the underlying mechanism by linking ADAM10‐initiated RIP of Notch to the regulation of MT cytoskeleton through transcriptional control of Dcx expression.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"31 1","pages":"919 - 932"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82194473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Joint Attention and Brain Functional Connectivity in Infants and Toddlers 婴幼儿的联合注意与脑功能连通性
Cerebral Cortex (New York, NY) Pub Date : 2017-01-07 DOI: 10.1093/cercor/bhw403
A. Eggebrecht, J. Elison, E. Feczko, A. Todorov, J. Wolff, S. Kandala, C. Adams, A. Snyder, J. Lewis, A. Estes, L. Zwaigenbaum, K. Botteron, R. McKinstry, J. Constantino, Alan C. Evans, H. Hazlett, S. Dager, S. Paterson, R. Schultz, M. Styner, G. Gerig, Samir Das, P. Kostopoulos, B. Schlaggar, S. Petersen, J. Piven, J. Pruett
{"title":"Joint Attention and Brain Functional Connectivity in Infants and Toddlers","authors":"A. Eggebrecht, J. Elison, E. Feczko, A. Todorov, J. Wolff, S. Kandala, C. Adams, A. Snyder, J. Lewis, A. Estes, L. Zwaigenbaum, K. Botteron, R. McKinstry, J. Constantino, Alan C. Evans, H. Hazlett, S. Dager, S. Paterson, R. Schultz, M. Styner, G. Gerig, Samir Das, P. Kostopoulos, B. Schlaggar, S. Petersen, J. Piven, J. Pruett","doi":"10.1093/cercor/bhw403","DOIUrl":"https://doi.org/10.1093/cercor/bhw403","url":null,"abstract":"Abstract Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social‐communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain‐behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"7 1","pages":"1709 - 1720"},"PeriodicalIF":0.0,"publicationDate":"2017-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74985903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 96
Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism 自闭症患者情景记忆提取过程中海马功能连通性降低
Cerebral Cortex (New York, NY) Pub Date : 2017-01-05 DOI: 10.1093/cercor/bhw417
R. A. Cooper, Franziska R. Richter, P. Bays, K. Plaisted-Grant, S. Baron-Cohen, J. Simons
{"title":"Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism","authors":"R. A. Cooper, Franziska R. Richter, P. Bays, K. Plaisted-Grant, S. Baron-Cohen, J. Simons","doi":"10.1093/cercor/bhw417","DOIUrl":"https://doi.org/10.1093/cercor/bhw417","url":null,"abstract":"Abstract Increasing recent research has sought to understand the recollection impairments experienced by individuals with autism spectrum disorder (ASD). Here, we tested whether these memory deficits reflect a reduction in the probability of retrieval success or in the precision of memory representations. We also used functional magnetic resonance imaging (fMRI) to study the neural mechanisms underlying memory encoding and retrieval in ASD, focusing particularly on the functional connectivity of core episodic memory networks. Adults with ASD and typical control participants completed a memory task that involved studying visual displays and subsequently using a continuous dial to recreate their appearance. The ASD group exhibited reduced retrieval success, but there was no evidence of a difference in retrieval precision. fMRI data revealed similar patterns of brain activity and functional connectivity during memory encoding in the 2 groups, though encoding‐related lateral frontal activity predicted subsequent retrieval success only in the control group. During memory retrieval, the ASD group exhibited attenuated lateral frontal activity and substantially reduced hippocampal connectivity, particularly between hippocampus and regions of the fronto‐parietal control network. These findings demonstrate notable differences in brain function during episodic memory retrieval in ASD and highlight the importance of functional connectivity to understanding recollection‐related retrieval deficits in this population.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"46 1","pages":"888 - 902"},"PeriodicalIF":0.0,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80165159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 100
Fine Motor Skill Mediates Visual Memory Ability with Microstructural Neuro-correlates in Cerebellar Peduncles in Prematurely Born Adolescents 精细运动技能与早产青少年小脑蒂微结构神经相关物质介导视觉记忆能力
Cerebral Cortex (New York, NY) Pub Date : 2017-01-01 DOI: 10.1093/cercor/bhw415
Alyssa R. Thomas, C. Lacadie, B. Vohr, L. Ment, D. Scheinost
{"title":"Fine Motor Skill Mediates Visual Memory Ability with Microstructural Neuro-correlates in Cerebellar Peduncles in Prematurely Born Adolescents","authors":"Alyssa R. Thomas, C. Lacadie, B. Vohr, L. Ment, D. Scheinost","doi":"10.1093/cercor/bhw415","DOIUrl":"https://doi.org/10.1093/cercor/bhw415","url":null,"abstract":"Abstract Adolescents born preterm (PT) with no evidence of neonatal brain injury are at risk of deficits in visual memory and fine motor skills that diminish academic performance. The association between these deficits and white matter microstructure is relatively unexplored. We studied 190 PTs with no brain injury and 92 term controls at age 16 years. The Rey‐Osterrieth Complex Figure Test (ROCF), the Beery visual‐motor integration (VMI), and the Grooved Pegboard Test (GPT) were collected for all participants, while a subset (40 PTs and 40 terms) underwent diffusion‐weighted magnetic resonance imaging. PTs performed more poorly than terms on ROCF, VMI, and GPT (all P < 0.01). Mediation analysis showed fine motor skill (GPT score) significantly mediates group difference in ROCF and VMI (all P < 0.001). PTs showed a negative correlation (P < 0.05, corrected) between fractional anisotropy (FA) in the bilateral middle cerebellar peduncles and GPT score, with higher FA correlating to lower (faster task completion) GPT scores, and between FA in the right superior cerebellar peduncle and ROCF scores. PTs also had a positive correlation (P < 0.05, corrected) between VMI and left middle cerebellar peduncle FA. Novel strategies to target fine motor skills and the cerebellum may help PTs reach their full academic potential.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"74 1","pages":"322 - 329"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74564860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Differential Contribution of Low- and High-level Image Content to Eye Movements in Monkeys and Humans 猴子和人类的低和高图像内容对眼球运动的差异贡献
Cerebral Cortex (New York, NY) Pub Date : 2017-01-01 DOI: 10.1093/cercor/bhw399
N. Wilming, Tim C Kietzmann, M. Jutras, Cheng Xue, S. Treue, E. Buffalo, P. König
{"title":"Differential Contribution of Low- and High-level Image Content to Eye Movements in Monkeys and Humans","authors":"N. Wilming, Tim C Kietzmann, M. Jutras, Cheng Xue, S. Treue, E. Buffalo, P. König","doi":"10.1093/cercor/bhw399","DOIUrl":"https://doi.org/10.1093/cercor/bhw399","url":null,"abstract":"Abstract Oculomotor selection exerts a fundamental impact on our experience of the environment. To better understand the underlying principles, researchers typically rely on behavioral data from humans, and electrophysiological recordings in macaque monkeys. This approach rests on the assumption that the same selection processes are at play in both species. To test this assumption, we compared the viewing behavior of 106 humans and 11 macaques in an unconstrained free‐viewing task. Our data‐driven clustering analyses revealed distinct human and macaque clusters, indicating species‐specific selection strategies. Yet, cross‐species predictions were found to be above chance, indicating some level of shared behavior. Analyses relying on computational models of visual saliency indicate that such cross‐species commonalities in free viewing are largely due to similar low‐level selection mechanisms, with only a small contribution by shared higher level selection mechanisms and with consistent viewing behavior of monkeys being a subset of the consistent viewing behavior of humans.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"178 1","pages":"279 - 293"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80010791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking. 多目标跟踪中绑定目标识别和定位的皮质回路。
Cerebral Cortex (New York, NY) Pub Date : 2017-01-01 DOI: 10.1093/cercor/bhw380
Lauri Nummenmaa, Lauri Oksama, Erico Glerean, Jukka Hyönä
{"title":"Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking.","authors":"Lauri Nummenmaa, Lauri Oksama, Erico Glerean, Jukka Hyönä","doi":"10.1093/cercor/bhw380","DOIUrl":"10.1093/cercor/bhw380","url":null,"abstract":"<p><p>Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants' hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking.</p>","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"25 1","pages":"162-172"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80604289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Representations of Belief Concepts: A Representational Similarity Approach to Social Semantics 信念概念的神经表征:社会语义学的表征相似方法
Cerebral Cortex (New York, NY) Pub Date : 2017-01-01 DOI: 10.1093/cercor/bhw401
Anna Leshinskaya, J. M. Contreras, A. Caramazza, Jason P. Mitchell
{"title":"Neural Representations of Belief Concepts: A Representational Similarity Approach to Social Semantics","authors":"Anna Leshinskaya, J. M. Contreras, A. Caramazza, Jason P. Mitchell","doi":"10.1093/cercor/bhw401","DOIUrl":"https://doi.org/10.1093/cercor/bhw401","url":null,"abstract":"Abstract The present experiment identified neural regions that represent a class of concepts that are independent of perceptual or sensory attributes. During functional magnetic resonance imaging scanning, participants viewed names of social groups (e.g. Atheists, Evangelicals, and Economists) and performed a one‐back similarity judgment according to 1 of 2 dimensions of belief attributes: political orientation (Liberal to Conservative) or spiritualism (Spiritualist to Materialist). By generalizing across a wide variety of social groups that possess these beliefs, these attribute concepts did not coincide with any specific sensory quality, allowing us to target conceptual, rather than perceptual, representations. Multi‐voxel pattern searchlight analysis was used to identify regions in which activation patterns distinguished the 2 ends of both dimensions: Conservative from Liberal social groups when participants focused on the political orientation dimension, and spiritual from Materialist groups when participants focused on the spiritualism dimension. A cluster in right precuneus exhibited such a pattern, indicating that it carries information about belief‐attribute concepts and forms part of semantic memory—perhaps a component particularly concerned with psychological traits. This region did not overlap with the theory of mind network, which engaged nearby, but distinct, parts of precuneus. These findings have implications for the neural organization of conceptual knowledge, especially the understanding of social groups.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"418 1","pages":"344 - 357"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79622157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Functional and Quantitative MRI Mapping of Somatomotor Representations of Human Supralaryngeal Vocal Tract. 人咽上声道躯体运动表征的功能和定量MRI成像。
Cerebral Cortex (New York, NY) Pub Date : 2017-01-01 DOI: 10.1093/cercor/bhw393
Daniel Carey, Saloni Krishnan, Martina F Callaghan, Martin I Sereno, Frederic Dick
{"title":"Functional and Quantitative MRI Mapping of Somatomotor Representations of Human Supralaryngeal Vocal Tract.","authors":"Daniel Carey, Saloni Krishnan, Martina F Callaghan, Martin I Sereno, Frederic Dick","doi":"10.1093/cercor/bhw393","DOIUrl":"10.1093/cercor/bhw393","url":null,"abstract":"<p><p>Speech articulation requires precise control of and coordination between the effectors of the vocal tract (e.g., lips, tongue, soft palate, and larynx). However, it is unclear how the cortex represents movements of and contact between these effectors during speech, or how these cortical responses relate to inter-regional anatomical borders. Here, we used phase-encoded fMRI to map somatomotor representations of speech articulations. Phonetically trained participants produced speech phones, progressing from front (bilabial) to back (glottal) place of articulation. Maps of cortical myelin proxies (R1 = 1/T1) further allowed us to situate functional maps with respect to anatomical borders of motor and somatosensory regions. Across participants, we found a consistent topological map of place of articulation, spanning the central sulcus and primary motor and somatosensory areas, that moved from lateral to inferior as place of articulation progressed from front to back. Phones produced at velar and glottal places of articulation activated the inferior aspect of the central sulcus, but with considerable across-subject variability. R1 maps for a subset of participants revealed that articulator maps extended posteriorly into secondary somatosensory regions. These results show consistent topological organization of cortical representations of the vocal apparatus in the context of speech behavior.</p>","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"39 10 1","pages":"265-278"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82830503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex 恒河猴皮层自我运动一致的光流加工
Cerebral Cortex (New York, NY) Pub Date : 2017-01-01 DOI: 10.1093/cercor/bhw412
B. Cottereau, Andrew T. Smith, Samy Rima, D. Fize, Yseult Héjja-Brichard, L. Renaud, Camille Lejards, N. Vayssiere, Y. Trotter, J. Durand
{"title":"Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex","authors":"B. Cottereau, Andrew T. Smith, Samy Rima, D. Fize, Yseult Héjja-Brichard, L. Renaud, Camille Lejards, N. Vayssiere, Y. Trotter, J. Durand","doi":"10.1093/cercor/bhw412","DOIUrl":"https://doi.org/10.1093/cercor/bhw412","url":null,"abstract":"Abstract The cortical network that processes visual cues to self‐motion was characterized with functional magnetic resonance imaging in 3 awake behaving macaques. The experimental protocol was similar to previous human studies in which the responses to a single large optic flow patch were contrasted with responses to an array of 9 similar flow patches. This distinguishes cortical regions where neurons respond to flow in their receptive fields regardless of surrounding motion from those that are sensitive to whether the overall image arises from self‐motion. In all 3 animals, significant selectivity for egomotion‐consistent flow was found in several areas previously associated with optic flow processing, and notably dorsal middle superior temporal area, ventral intra‐parietal area, and VPS. It was also seen in areas 7a (Opt), STPm, FEFsem, FEFsac and in a region of the cingulate sulcus that may be homologous with human area CSv. Selectivity for egomotion‐compatible flow was never total but was particularly strong in VPS and putative macaque CSv. Direct comparison of results with the equivalent human studies reveals several commonalities but also some differences.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"21 1","pages":"330 - 343"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79963391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信