{"title":"The first cell fate decision in pre-implantation mouse embryos","authors":"Chunmeng Yao , Wenhao Zhang , Ling Shuai","doi":"10.1016/j.cr.2019.10.001","DOIUrl":"10.1016/j.cr.2019.10.001","url":null,"abstract":"<div><p>Fertilization happens when sperm and oocytes meet, which is a complicated process involving many important types of biological activation. Beginning in the 2-cell stage, an important event referred to as zygotic genome activation (ZGA) occurs, which governs the subsequent development of the embryo. In ZGA, multiple epigenetic modifications are involved and critical for pre-implantation development. These changes occur after ZGA, resulting in blastomeres segregate into two different lineages. Some blastomeres develop into the inner cell mass (ICM), and others develop into the trophectoderm (TE), which is considered the first cell fate decision. How this process is initiated and the exact molecular mechanisms involved are fascinating questions that remain to be answered. In this review, we introduce some possible developmental models of the first cell fate decision and discuss the signalling pathways and transcriptional networks regulating this process.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"8 2","pages":"Pages 51-57"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2019.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37463160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faten A.M. Abo-Aziza , Abdel Kader A. Zaki , Amal M. Abo El-Maaty
{"title":"Bone marrow-derived mesenchymal stem cell (BM-MSC): A tool of cell therapy in hydatid experimentally infected rats","authors":"Faten A.M. Abo-Aziza , Abdel Kader A. Zaki , Amal M. Abo El-Maaty","doi":"10.1016/j.cr.2019.11.001","DOIUrl":"10.1016/j.cr.2019.11.001","url":null,"abstract":"<div><p>This study aimed to clarify the potentiality of bone marrow mesenchymal stem cells (BM-MSC) transplantation with albendazole (ABZ) on the modulation of immune responses against hydatid cyst antigens and the regeneration of injured livers in experimentally infected rats. Three different antigens of hydatid cyst fluid (HCF), hydatid cyst protoscolex (HCP) and hydatid cyst germinal layer (HCG) were isolated and their antigenic potencies were determined. The ultrasound, immunological and pathological criteria were investigated. Counting of 80% confluence BM-MSC was 4.68 × 10<sup>4</sup> cells/cm<sup>2</sup> with 92.24% viability. Final population doublings score was 65.31 that indicated proliferation and self-renewability. Phenotyping of BM-MSC showed expression of CD73 and CD29 without exhibition of CD34 and CD14. Ultrasound examination showed multiple hydatid cysts in liver with low blood flow and spleenomegaly 8 weeks’ post infection. No significant differences were noted in cystic diameter in uni-cyst liver at 2nd and 4th weeks following ABZ treatment while it was significantly decreased (P < 0.05) following transplantation of BM-MSC + ABZ treatment comparing to experimentally infected untreated group. Igs and IgG responses to the three antigens were significantly elevated while elevation in IgM response was only to HCG (P < 0.05). ABZ treatment accompanied with significant decrease in Igs and IgG titers against HCF and HCG only at 4th week post treatment (P < 0.05). However, Igs titer against HCF, HCP and HCG was significantly decreased at the 4th week following transplantation of BM-MSC + ABZ. Interestingly, the combination of BM-MSC + ABZ treatment resulted in reduction of Igs response to HCP to normal level as that of healthy control. Experimental infection resulted in elevation of TNF-α and IL-6 (P < 0.05) while, IL-4 and IL-10 decreased (P < 0.01). After transplantation of BM-MSC + ABZ treatment, serum TNF-α and IL-6 concentrations were reduced (P < 0.05) at both the 2nd and 4th weeks. However, IL-4 and IL-10 concentrations were significantly elevated (P < 0.05) only at 4th week following transplantation of BM-MSC + ABZ treatment. In conclusion, BM-MSC transplantation following ABZ administration can regenerate injured liver tissue without complete disappearance of hydatid cyst. In addition, it can modulate host protective humeral and cell mediated immune responses against hydatid cyst antigens. Therefore, the current study encourages to move to the step of performing clinical trials in humans.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"8 2","pages":"Pages 58-71"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2019.11.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37463161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lianchao Tang , Fayu Yang , Xiaoxue He , Haihua Xie , Xiaoyu Liu , Junhao Fu , Haitao Xi , Xiaosheng Lu , Changbao Liu , Zongming Song , Jia Qu , Junzhao Zhao , Feng Gu
{"title":"Efficient cleavage resolves PAM preferences of CRISPR-Cas in human cells","authors":"Lianchao Tang , Fayu Yang , Xiaoxue He , Haihua Xie , Xiaoyu Liu , Junhao Fu , Haitao Xi , Xiaosheng Lu , Changbao Liu , Zongming Song , Jia Qu , Junzhao Zhao , Feng Gu","doi":"10.1016/j.cr.2019.08.002","DOIUrl":"10.1016/j.cr.2019.08.002","url":null,"abstract":"<div><p>Clustered regularly interspaced short palindromic repeats and associated proteins (CRISPR-Cas) of bacterial adaptive immunity have been adopted as a powerful and versatile tool for manipulation of the genome. This paradigm has been widely applied in biological research and treatments of animal or cellular disease models. A critical feature of CRISPR-Cas is the protospacer adjacent motif (PAM), which dictates the DNA target recognition mechanism of Cas proteins. While, direct identifying functional PAM sequences in human cells remains a challenge. Here, we developed a positive screen system termed PAM-DOSE (PAM Definition by Observable Sequence Excision) to delineate the functional PAMs in human cells. Specifically, the PAM libraries for CRISPR-Cas (SpCas9, SpCas9-NG, FnCas12a, AsCas12a, LbCas12a and MbCas12a) were generated and the corresponding CRISPR-Cas mediated cleaved fragments with functional PAM in human cells were harvested for DNA sequencing, which could be tracked and visualized with either florescence microscopy or flow cytometry analysis. With this system, we identified the functional PAMs of CRISPR-Cas members. We also found that spacer sequence affects the PAM preference of Cas proteins. This method will facilitate identification of functional PAMs for Cas-mediated human genome editing applications.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"8 2","pages":"Pages 44-50"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2019.08.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41719598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Methods and applications of CRISPR/Cas system for genome editing in stem cells","authors":"Guang Yang, Xingxu Huang","doi":"10.1016/j.cr.2019.08.001","DOIUrl":"10.1016/j.cr.2019.08.001","url":null,"abstract":"<div><p>Genome editing technology holds great promise for genome manipulation and gene therapy. While widespread utilization, genome editing has been used to unravel the roles of specific genes in differentiation and pluripotency of stem cells, and reinforce the stem cell-based applications. In this review, we summarize the advances of genome editing technology, as well as the derivative technologies from CRISPR/Cas system, which show tremendous potential in various fields. We also highlight the key findings in the studies of stem cells and regeneration by genome editing technology.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"8 2","pages":"Pages 33-41"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2019.08.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41221780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Xing , Aiping Lin , Zhenghui Su , Chunhua Liu , Wenhao Huang , Wenjing Guo , Guangjin Pan , Yiping Guo , Xiaofen Zhong
{"title":"Retrograde monosynaptic tracing through an engineered human embryonic stem cell line reveals synaptic inputs from host neurons to grafted cells","authors":"Qi Xing , Aiping Lin , Zhenghui Su , Chunhua Liu , Wenhao Huang , Wenjing Guo , Guangjin Pan , Yiping Guo , Xiaofen Zhong","doi":"10.1016/j.cr.2019.01.002","DOIUrl":"10.1016/j.cr.2019.01.002","url":null,"abstract":"<div><p>Retrograde monosynaptic tracing with EnvA-pseudotyped rabies virus has been employed to identify the afferent and efferent connectivity of transplanted human embryonic stem (hES) cell-derived neurons in animal models. Due to the protracted development of transplanted human neurons in host animals, it is important that those transplanted cells express avian leukosis and sarcoma virus subgroup A receptor (TVA) and rabies glycoprotein G (Rgp) for a period of up to several months to enable identification of the synaptic inputs from host neurons to grafted neurons through this rabies virus-based method. Here, we report the generation of an engineered hES cell line through CRISPR/Cas9-mediated targeting to the AAVS1 locus of an EnvA-pseudotyped rabies virus-based tool for retrograde monosynaptic tracing. This engineered hES cell line, named H1-CAG-GTRgp, expresses GFP, TVA and Rgp. Upon transplantation of H1-CAG-GTRgp-derived neural progenitor cells (NPCs) into the rat brain after traumatic injury, the grafted neurons derived from H1-CAG-GTRgp cells expressed GFP, TVA, and Rgp stably for up to 6 months post-transplantation and received robust synaptic inputs from host neurons in the target regions of the orthotopic neural circuitry. The retrograde monosynaptic tracing hES cell line provides an efficient approach to analyze transplant connectivity for the comprehensive assessment of host-donor cell innervation.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"8 1","pages":"Pages 1-8"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2019.01.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37075032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use of large animal models to investigate Huntington's diseases","authors":"Sen Yan , Shihua Li , Xiao-Jiang Li","doi":"10.1016/j.cr.2019.01.001","DOIUrl":"10.1016/j.cr.2019.01.001","url":null,"abstract":"<div><p>Animal models that can mimic human diseases are the important tools for investigating the pathogenesis of the diseases and finding a way for treatment. There is no doubt that small animal models have provided a wealth of information regarding disease pathogenesis and also offered widely used tools to develop therapeutic strategies. Rodent models have been very valuable for investigators to understand the mechanisms underlying misfolded protein-mediated neuronal dysfunction and behavioral phenotypes in a variety of neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases (HD). However, most of genetically modified rodent models of these diseases lack the overt and selective neurodegeneration seen in the patient brains. Since large animals are more similar to humans than small animals and rodents, the large animal models are likely to mimic important neuropathological features in humans. Here we discuss the application of large animal models in neurodegenerative disease research with focus on the HD large animal models, aiming to provide insight into the application of animal models to study neurodegenerative diseases.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"8 1","pages":"Pages 9-11"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2019.01.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37075033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}