CCS ChemistryPub Date : 2024-08-23DOI: 10.31635/ccschem.024.202404401
{"title":"Mechanism and Origins of Weak Bonding-Controlled Selectivities in Cinchoninium-Catalyzed Umpolung Michael Addition of Imines","authors":"","doi":"10.31635/ccschem.024.202404401","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404401","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"55 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-08-19DOI: 10.31635/ccschem.024.202404524
{"title":"An Efficient Protective Layer with High Ionic Conductivity Enables Long-Life and Dendrite-Free Li Metal Anodes","authors":"","doi":"10.31635/ccschem.024.202404524","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404524","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"90 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-08-13DOI: 10.31635/ccschem.024.202404436
Miaoyu Li, Pupu Yang, Wenjie Lv, Qie Liu, Yujie Wu, Shiqian Du, Gen Huang, Zuyao Jiang, Jingjing Wang, Yabin Xu, Yangyang Zhou, Shanfu Lu, Li Tao, Shuangyin Wang
{"title":"Ultrastable Ruthenium-Based Electrocatalysts for Hydrogen Oxidation Reaction in High-Temperature Polymer Electrolyte Membrane Fuel Cells","authors":"Miaoyu Li, Pupu Yang, Wenjie Lv, Qie Liu, Yujie Wu, Shiqian Du, Gen Huang, Zuyao Jiang, Jingjing Wang, Yabin Xu, Yangyang Zhou, Shanfu Lu, Li Tao, Shuangyin Wang","doi":"10.31635/ccschem.024.202404436","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404436","url":null,"abstract":"<p>Ruthenium (Ru) is a promising electrocatalyst for hydrogen oxidation reaction (HOR) due to the similar metal hydrogen bond energy to Pt. However, Ru is easily deactivated or dissolved under an oxidation potential, which makes it unavailable in proton exchange membrane fuel cells. In this work, ultrastable Ru-based electrocatalysts for HOR in high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) were developed by Mo doping. Under the operation conditions of HT-PEMFCs, thermal reduction inhibited the production of amorphous Ru oxide (RuO<sub>2</sub>) in the Ru-based electrocatalysts during the HOR. Mo doping significantly improved the stability of the electrocatalyst by decreasing the reduction temperature of RuO<sub>2</sub> and accelerating the HOR by reducing the adsorption of H*. RuMo/C exhibited excellent HOR activity at high temperatures due to thermal reduction inhibition of electrooxidation; the fabricated HT-PEMFCs exhibited long-term stability and a 1050 mW cm<sup>−2</sup> peak power density, comparable to the commercial Pt catalyst. This work provides a novel strategy for designing electrocatalysts by combining material intrinsic properties and work conditions, which could promote the development of advanced electrocatalysts for HT-PEMFCs.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"24 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating Pd(I) Atoms in Schottky Junctions for Visible-Light-Driven Urea Production from Ambient Nitrogenous Species and CO 2","authors":"Wei-Yao Hu, Qi-Yuan Li, Dong Xu, Peng Gao, Pan-Zhe Qiao, Dong Li, Si-Yuan Xia, Xiu Lin, Jie-Sheng Chen, Xin-Hao Li","doi":"10.31635/ccschem.024.202404490","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404490","url":null,"abstract":"<p>The mass production of urea, the most widely used agricultural fertilizer, usually relies on energy- and carbon-intensive processes. The light-driven synthesis path has great potential for more sustainable techniques to produce urea from abundant naturally occurring resources, but this method suffers from the use of pure CO<sub>2</sub> and high-energy-driven forces (high temperature or ultraviolet light). Herein, we present a mild photocatalytic pathway for urea production from diverse nitrogenous species (such as NO<sub>3</sub><sup>−</sup>, NH<sub>3</sub>, and N<sub>2</sub>) and diluted CO<sub>2</sub> using visible light. We designed a palladium (Pd)-doped Schottky heterojunction, composed of graphene and titanium dioxide, as an effective photocatalyst to achieve on-farm urea generation. With the injection of visible-light-generated hot electrons from graphene to TiO<sub>2</sub>, the as-integrated Pd(I) centers with a special oxidation state of +1.36 in the TiO<sub>2</sub> lattice can initiate the universal reaction path of cascade reduction of NO<sub>3</sub><sup>−</sup>/N<sub>2</sub> to NH<sub>3</sub> and resulting C–N coupling of CO<sub>2</sub> with as-formed or added NH<sub>3</sub> to transform diverse nitrogenous species and CO<sub>2</sub> into urea. The urea yield over the <i>at.</i>-Pd@TiO<sub>2</sub>/Gr photocatalyst is 1.62 mmol g<sup>−1</sup> h<sup>−1</sup> under visible-light irradiation with an apparent quantum yield of 1.05% at 400 nm and 0.39% even at 700 nm.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"80 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Room-Temperature Self-Healing Glassy Thermosetting Polymers via Defective Network Design","authors":"Hao Wang, Biqiang Jin, Haitao Wu, Changcheng Wang, Jinrong Wu","doi":"10.31635/ccschem.024.202404486","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404486","url":null,"abstract":"<p>Glassy thermosetting polymers, which possess excellent mechanical properties, structural stability, and solvent resistance, cannot be healed and recycled due to the irreversible crosslinking network. Covalent adaptive networks could address these drawbacks, as their chemical networks are able to shuffle dynamic covalent bonds through exchange reactions, which nevertheless need high temperature or solvent assistance. Here we report a room-temperature self-healing glassy thermoset enabled by designing a disulfide-bond and H-bond hybridized network carrying abundant dangling chains, which are commonly known as network “defects.” However, the “defects” do not plasticize the polymer, as they are bound to network chains through H-bonds. Therefore, the polymer possesses high modulus and strength at room temperature. Importantly, the “defects” can drive the metathesis reaction of disulfide bonds and the rearrangement of H-bonds in the glassy state, enabling the thermosetting network to self-heal at and even below room temperature.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"40 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}