CCS ChemistryPub Date : 2024-07-27DOI: 10.31635/ccschem.024.202404201
{"title":"Isomer-Selective Generation of Cytidine Radicals via Wavelength-Regulated Photodissociation","authors":"","doi":"10.31635/ccschem.024.202404201","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404201","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"25 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-27DOI: 10.31635/ccschem.024.202404482
{"title":"Molecular Skeletons Modification Induces Distinctive Aggregation Behaviors and Boosts the Efficiency Over 19% in Organic Solar Cells","authors":"","doi":"10.31635/ccschem.024.202404482","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404482","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"58 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expansion Strategy-Driven Micron-Level Resolution Mass Spectrometry Imaging of Lipids in Mouse Brain Tissue","authors":"Yik Ling Winnie Hung, Chengyi Xie, Jianing Wang, Xin Diao, Ruxin Li, Xiaoxiao Wang, Shulan Qiu, Jiacheng Fang, Zongwei Cai","doi":"10.31635/ccschem.024.202404002","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404002","url":null,"abstract":"<p>A novel method for enhanced resolution, termed expansion mass spectrometry imaging, has been developed for lipid mass spectrometry imaging, utilizing existing commercially available mass spectrometers without necessitating modifications. This approach involves embedding tissue sections in a swellable polyelectrolyte gel, with the target biomolecules indirectly anchored to the gel network. By employing matrix-assisted laser desorption ionization mass spectrometry imaging, the method has realized an enhanced spatial resolution that surpasses the conventional resolution limits of commercial instruments by approximately 4.5 fold. This enhancement permits the detailed visualization of intricate structures within the mouse brain at a subcellular level, with a lateral resolution nearing 1 μm. As a physical technique for achieving resolution beyond standard capabilities, this readily adaptable approach presents a powerful tool for high-definition imaging in biological research.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"26 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-27DOI: 10.31635/ccschem.024.202404549
Yi Li, Yu-Peng Liu, Mengying Xu, Weiwei Xu, Feng-Ping Zhang, Mengchun Ye
{"title":"Ni–Al Bimetal-Catalyzed Tertiary C(sp3)–H Activation for Dual C–H Annulation of Formamides with Alkynes","authors":"Yi Li, Yu-Peng Liu, Mengying Xu, Weiwei Xu, Feng-Ping Zhang, Mengchun Ye","doi":"10.31635/ccschem.024.202404549","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404549","url":null,"abstract":"<p>3d-Metal-catalyzed tertiary C(sp<sup>3</sup>)–H bond activation has been a formidable challenge. Herein, a tertiary C(sp<sup>3</sup>)–H bond is smoothly activated by Ni–Al bimetallic catalysts for dual C–H annulation of formamides with alkynes, delivering a series of δ-lactams with a quaternary carbon up to 98% yield. Various tertiary C(sp<sup>3</sup>)–H bonds such as noncyclic, monocyclic and bridged-ring tertiary C(sp<sup>3</sup>)–H bonds are all compatible with the reaction.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"87 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-27DOI: 10.31635/ccschem.024.202404171
Wei Zhou, Mengqian Xu, Xiao Wang, Xu Fang, Xi Chen, Qingkun Kong, Ruiling Zhang, Lei Sun, Liyuan Zhao, Xing Lu, Wei-Qiao Deng, Chengcheng Liu
{"title":"Three-Dimensional Interlocked Crystalline Frameworks for Photocatalytic CO2 Conversion","authors":"Wei Zhou, Mengqian Xu, Xiao Wang, Xu Fang, Xi Chen, Qingkun Kong, Ruiling Zhang, Lei Sun, Liyuan Zhao, Xing Lu, Wei-Qiao Deng, Chengcheng Liu","doi":"10.31635/ccschem.024.202404171","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404171","url":null,"abstract":"<p>Three-dimensional (3D) interlocking frameworks are attracting increasing research attention owing to their intriguing mechanical properties, large surface areas, and rich open sites. The study in this paper entailed the first use of tuning solvents to realize the synthesis of metal–organic frameworks (MOFs) and metallosalen-based covalent–organic frameworks (COFs) with similar 3D interlocked structures from the same precursors. These interlocking crystalline frameworks are efficient catalysts for CO<sub>2</sub> photoreduction. Our study is the first to investigate the impact of differences in the metal coordination environment within structurally similar COFs and MOFs in CO<sub>2</sub> photoreduction activity. Among the materials tested, the photocatalytic performance of the M-N<sub>2</sub>O<sub>4</sub>-MOFs (M = Zn, Co, and Ni) was found to be superior to that of their M-N<sub>2</sub>O<sub>2</sub>-COF counterparts. Notably, the Ni-N<sub>2</sub>O<sub>4</sub>-MOF achieved a CO production rate of 3.96 mmol g<sup>−1</sup> h<sup>−1</sup> and a CO selectivity of 93.7%. In contrast, the Ni-N<sub>2</sub>O<sub>2</sub>-COF exhibited a production rate of only 0.64 mmol g<sup>−1</sup> h<sup>−1</sup> with a 61.1% CO selectivity. Furthermore, a descriptor for the CO evolution rate was derived from the conduction band minimum and the reaction energy of the rate-determining step, which are two key factors influencing photocatalytic activity. This study opens up new avenues for employing interlocking crystalline frameworks in the efficient photoreduction of CO<sub>2</sub>.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"14 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-27DOI: 10.31635/ccschem.024.202404243
{"title":"The Synergetic Effect of Dual Active Sites in ZnO-ZrO2 Catalyst for CO2 Hydrogenation to Methanol","authors":"","doi":"10.31635/ccschem.024.202404243","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404243","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"66 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-26DOI: 10.31635/ccschem.024.202404344
Chenjia Liang, Ruiyao Zhao, Xiaoxia Hou, Jun Yao, Liwen Wang, Teng Chen, Yingxuan Zhao, Taotao Zhao, Jie Yang, Rurong Liu, Xianghao Wang, Xiangke Guo, Nianhua Xue, Luming Peng, Tao Wang, Xuefeng Guo, Xiaomei Zhao, Yan Zhu, Weiping Ding
{"title":"Internal and External Cooperation of Pt/SiC-Ni Catalyst Affording Unexpected Performance of Direct Methanol Fuel Cell","authors":"Chenjia Liang, Ruiyao Zhao, Xiaoxia Hou, Jun Yao, Liwen Wang, Teng Chen, Yingxuan Zhao, Taotao Zhao, Jie Yang, Rurong Liu, Xianghao Wang, Xiangke Guo, Nianhua Xue, Luming Peng, Tao Wang, Xuefeng Guo, Xiaomei Zhao, Yan Zhu, Weiping Ding","doi":"10.31635/ccschem.024.202404344","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404344","url":null,"abstract":"<p>We present here an unexpected active and robust catalyst Pt/SiC-Ni, affording a high-performance direct methanol fuel cell (DMFC) with proton exchange membrane. The unique Ni-doped SiC support is obtained by an unusual method through the reaction deposition of CH<sub>4</sub> with NiSi<sub>2</sub> nanoalloys at low temperatures, in open spherical-shell morphology composed of SiC-Ni nanosheets, possessing high specific surface area (410 m<sup>2</sup> g<sup>−1</sup>) and high conductivity. The membrane electrode assembly achieves a power of ∼1.12 kW g<sub>Pt</sub><sup>−1</sup> in DMFC with the Pt/SiC-Ni as the anodic catalyst. There are various coordination effects between the high surface area SiC with internally doped Ni and the externally loaded Pt NPs including surface reaction and mass transfer, which endows the DMFC with high power and stability. Additionally, differential electrochemical mass spectrometry and TGA-MS demonstrate the challenge of support corrosion has been significantly solved, another key factor for improving durability. The abovementioned findings are the first to demonstrate that metal-doping modified SiC materials loaded with Pt will be a highly promising catalyst for DMFC applications.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"29 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-07-26DOI: 10.31635/ccschem.024.202404389
Jia-Heng Fang, Ji-Jun Chen, Xuan-Yi Du, Zhe Dong, Run-Yan Tian, Chang-Jiang Yang, Fu-Li Wang, Cheng Luan, Zhong-Liang Li, Xin-Yuan Liu
{"title":"Copper-Catalyzed Asymmetric Three-Component Radical 1,2-Carboamination of Acrylamides with Arylamines: Access to Chiral α-Tertiary N-Arylamines","authors":"Jia-Heng Fang, Ji-Jun Chen, Xuan-Yi Du, Zhe Dong, Run-Yan Tian, Chang-Jiang Yang, Fu-Li Wang, Cheng Luan, Zhong-Liang Li, Xin-Yuan Liu","doi":"10.31635/ccschem.024.202404389","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404389","url":null,"abstract":"<p>The asymmetric radical carboamination of 1,1-disubstituted alkenes from readily available alkyl halides and arylamines provides expedient access to value-added chiral α-tertiary <i>N</i>-arylamines but has been less recognized. A challenge arises mainly from the difficult reaction initiation inherent in alkyl halides and the construction of fully substituted chiral C–N bonds from sterically congested tertiary alkyl radicals. Herein, we report a copper-catalyzed asymmetric three-component radical carboamination of acrylamides utilizing an anionic chiral <i>N,N,N</i>-ligand under mild conditions. This ligand was essential for the reaction initiation by enhancing the reducing capability of copper and enabling the enantiocontrol over tertiary alkyl radicals. The substrate scope was broad, covering an array of acrylamides, aryl- and heteroaryl-amines, as well as alkyl halides and sulfonyl chlorides, enabling good functional group tolerance. When combined with the follow-up transformation, this strategy provides a versatile platform for accessing structurally diverse chiral α-tertiary <i>N</i>-arylamine building blocks of interest in organic synthesis.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"10 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}