{"title":"铑(I)催化的不对称烷基碳烯 B-H 键插入:多功能手性烷基硼烷的对映选择性合成","authors":"Jian-Guo Liu, Bo Liu, Ziyan Li, Ming-Hua Xu","doi":"10.31635/ccschem.024.202404591","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in transition metal-asymmetric carbene B–H insertion reactions provide a straightforward and powerful protocol to access chiral organoboron compounds. However, the related reaction involving linear alkyl carbenes has not been successfully developed. Apart from the difficulty of controlling the enantioselectivity, another major challenge is the high propensity of the alkyl metal carbene to undergo a β-hydride migration to form undesired alkenes. Herein, we report our development of an efficient alkyl carbene B–H insertion reaction using rhodium(I)/diene complexes as the catalysts. This simple catalytic system not only reduces the formation of alkene byproduct but also achieves high enantioselectivity of the carbene B–H insertion. This method facilitates easy asymmetric access to a wide variety of structurally diverse alkylboranes in high yields, and their further synthetic application and transformation have also been described. Mechanistic studies show that the β-hydride migration is less favorable than the carbene insertion pathway under the rhodium(I)/diene catalytic system and that the B–H bond insertion is the rate-limiting step.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhodium(I)-Catalyzed Asymmetric Alkyl Carbene B–H Bond Insertion: Enantioselective Synthesis of Versatile Chiral Alkylboranes\",\"authors\":\"Jian-Guo Liu, Bo Liu, Ziyan Li, Ming-Hua Xu\",\"doi\":\"10.31635/ccschem.024.202404591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advances in transition metal-asymmetric carbene B–H insertion reactions provide a straightforward and powerful protocol to access chiral organoboron compounds. However, the related reaction involving linear alkyl carbenes has not been successfully developed. Apart from the difficulty of controlling the enantioselectivity, another major challenge is the high propensity of the alkyl metal carbene to undergo a β-hydride migration to form undesired alkenes. Herein, we report our development of an efficient alkyl carbene B–H insertion reaction using rhodium(I)/diene complexes as the catalysts. This simple catalytic system not only reduces the formation of alkene byproduct but also achieves high enantioselectivity of the carbene B–H insertion. This method facilitates easy asymmetric access to a wide variety of structurally diverse alkylboranes in high yields, and their further synthetic application and transformation have also been described. Mechanistic studies show that the β-hydride migration is less favorable than the carbene insertion pathway under the rhodium(I)/diene catalytic system and that the B–H bond insertion is the rate-limiting step.</p>\",\"PeriodicalId\":9810,\"journal\":{\"name\":\"CCS Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CCS Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31635/ccschem.024.202404591\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202404591","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rhodium(I)-Catalyzed Asymmetric Alkyl Carbene B–H Bond Insertion: Enantioselective Synthesis of Versatile Chiral Alkylboranes
Recent advances in transition metal-asymmetric carbene B–H insertion reactions provide a straightforward and powerful protocol to access chiral organoboron compounds. However, the related reaction involving linear alkyl carbenes has not been successfully developed. Apart from the difficulty of controlling the enantioselectivity, another major challenge is the high propensity of the alkyl metal carbene to undergo a β-hydride migration to form undesired alkenes. Herein, we report our development of an efficient alkyl carbene B–H insertion reaction using rhodium(I)/diene complexes as the catalysts. This simple catalytic system not only reduces the formation of alkene byproduct but also achieves high enantioselectivity of the carbene B–H insertion. This method facilitates easy asymmetric access to a wide variety of structurally diverse alkylboranes in high yields, and their further synthetic application and transformation have also been described. Mechanistic studies show that the β-hydride migration is less favorable than the carbene insertion pathway under the rhodium(I)/diene catalytic system and that the B–H bond insertion is the rate-limiting step.
期刊介绍:
CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.