CCS ChemistryPub Date : 2024-09-05DOI: 10.31635/ccschem.024.202404426
{"title":"Growing a Lamination Structure of Graphdiyne/Nickel Sulfide for Oxygen Evolution Reaction","authors":"","doi":"10.31635/ccschem.024.202404426","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404426","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"9 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-09-03DOI: 10.31635/ccschem.024.202404677
{"title":"Strain Engineering of Multimetallic Nanomaterials for Advanced Electrocatalysis","authors":"","doi":"10.31635/ccschem.024.202404677","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404677","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"38 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-09-03DOI: 10.31635/ccschem.024.202404506
Zixuan Chen, Tongyao Liang, Jixing Yang, Yunhua Xu, Yuesheng Li
{"title":"p-Type Organic Cathode Materials with Oxygen Atoms as Active Sites for High-Performance Organic Batteries","authors":"Zixuan Chen, Tongyao Liang, Jixing Yang, Yunhua Xu, Yuesheng Li","doi":"10.31635/ccschem.024.202404506","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404506","url":null,"abstract":"<p>Organic electrode materials for lithium-ion batteries (LIBs) have attracted increasing attention due to their potential low cost and renewability. Although oxygen atoms have been the most common redox-active sites of n-type organic electrode materials, it is a great challenge to develop high-performance oxygen-based p-type materials. In this study, we designed and synthesized two organic cathode materials with benzofuran (BF) as the active unit. Connecting two BF units onto <i>para</i>-positions of benzene or pyrazine increased the molecular size and maintained the planar structure, which facilitated enhanced intermolecular interaction, and thus, reduced solubility. Importantly, we found that the target molecules could undergo in situ electropolymerization during the charging process inside the batteries, which further reduced the solubility and stabilized the electrode structure. Electrochemical tests showed that the optimized cathode materials could reach 99.5% of theoretical capacity in LIBs, with a high capacity of up to 170.9 mAh g<sup>−1</sup>. In addition, they could be stably cycled 5,000 times with a high capacity retention of 75.1%, which corresponded to an average capacity loss of only 0.005% per cycle. These exciting results should arouse much interest in the study of p-type organic cathode materials with oxygen atoms as active sites.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"102 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCS ChemistryPub Date : 2024-08-29DOI: 10.31635/ccschem.024.202404583
{"title":"Computational Identification of High-Efficiency Dual-Metal-Atom-Modified Ti-Metal–Organic Frameworks for Photocatalytic CO2 Reduction to Value-Added Chemicals","authors":"","doi":"10.31635/ccschem.024.202404583","DOIUrl":"https://doi.org/10.31635/ccschem.024.202404583","url":null,"abstract":"CCS Chemistry, Ahead of Print.<br/>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"2 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}