{"title":"Unconventional Synthetic Approaches to Unusual Peptide Derivatives.","authors":"Takeshi Nanjo","doi":"10.1248/cpb.c24-00752","DOIUrl":"10.1248/cpb.c24-00752","url":null,"abstract":"<p><p>Peptides that contain unusual motifs, such as non-proteinogenic amino acids (AAs) and/or macrocyclic substructures, have recently attracted great attention as a new modality in medium-sized-molecule drug discovery. Therefore, it is highly important to develop methods for the chemical synthesis of a wide variety of such unusual peptide derivatives, which are often difficult to prepare via conventional synthetic approaches. In this review, the development of unconventional approaches for the synthesis of unusual peptide derivatives is discussed. Specifically, a novel external-oxidant-mediated decarboxylative condensation of α-ketoacids that can be applied to the synthesis of a wide variety of unusual peptide derivatives is reported. Moreover, an organocatalytic asymmetric Mannich-type addition is discussed that provides chiral β-amino-α-ketoacids, which are required as starting materials for the decarboxylative condensation. In this reaction, the adducts corresponding to various unusual AA side chains are obtained in high yield and excellent stereoselectivity. Furthermore, the \"N-chloropeptide strategy\" is proposed as a new method for the chemical modification of peptides without the need for a reactive AA residue.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 4","pages":"268-282"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143771457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Vial-Inner-Surface Treatment Technology Improves Chemical Durability and Vial-Inner-Surface Uniformity to Reduce Drug Adsorption on the Vial.","authors":"Norikazu Miyamoto, Kenta Ohsugi, Taishi Higashi, Keiichi Motoyama","doi":"10.1248/cpb.c24-00658","DOIUrl":"10.1248/cpb.c24-00658","url":null,"abstract":"<p><p>The pharmaceutical industry relies heavily on the safe and efficient packaging of drugs and injection glass vials play a pivotal role in this regard. Ensuring the quality and consistency of these vials is essential for safeguarding the potency of pharmaceutical formulations. In this study, the recent breakthroughs achieved in the manufacturing of injection glass vials by implementing advanced surface-processing technologies were examined. We developed potential injection glass vials using the novel vial-inner-surface treatment (VIST) technology to homogenize the inner surface of the vials. Compared with common vials, the elution of alkali contents and conductivity of these injection glass vials were reduced because of the VIST technology, resulting in the formation of smooth and homogeneous inner surfaces. In addition, drug adsorption onto the inner surface of the VIST vials was considerably lowered than that onto common vials. These results suggest that VIST vials are of excellent quality and could become the standard injection glass vials.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 2","pages":"94-102"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shin Aoki, Tomohiro Tanaka, Kenta Yokoi, Azusa Kanbe, Tomoe Morita, Mayuka Nii, Hidetoshi Satoh, Masaki Kakihana, Shotaro Otaki, Saki Sekiguchi, Koki Nakamura, Toshifumi Tojo, Masanori Baba, Mika Okamoto
{"title":"Design, Synthesis, and Anti-SARS-CoV-2 Activity of Amodiaquine Analogs.","authors":"Shin Aoki, Tomohiro Tanaka, Kenta Yokoi, Azusa Kanbe, Tomoe Morita, Mayuka Nii, Hidetoshi Satoh, Masaki Kakihana, Shotaro Otaki, Saki Sekiguchi, Koki Nakamura, Toshifumi Tojo, Masanori Baba, Mika Okamoto","doi":"10.1248/cpb.c24-00647","DOIUrl":"https://doi.org/10.1248/cpb.c24-00647","url":null,"abstract":"<p><p>The pandemic of coronavirus disease 2019, caused by the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a serious concern worldwide. Although some effective vaccines have been developed, only a few anti-SARS-CoV-2 drugs have been approved for their clinical use. In this study, we designed and synthesized new anti-SARS-CoV-2 drugs based on the chemical structure of amodiaquine, which is known as an antimalarial drug. Consequently, we have identified amodiaquine analogs functionalized with dialkylamino-pendant aminophenol moieties that possess a high level of anti-SARS-CoV-2 activity with a low level of toxicity.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 4","pages":"355-368"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143984425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymmetric Synthesis of 3-Spiro-Fused 2-Oxindoles via Organocatalyst/N-Iodosuccinimide/Hydrogen Peroxide-Mediated Oxidative Cyclization.","authors":"Kosuke Nakashima, Yuichi Okuaki, Misaki Deguchi, Yasuyuki Matsushima, Shin-Ichi Hirashima, Tsuyoshi Miura","doi":"10.1248/cpb.c24-00839","DOIUrl":"https://doi.org/10.1248/cpb.c24-00839","url":null,"abstract":"<p><p>A squaramide organocatalyst was employed to efficiently promote asymmetric oxidative lactonization to construct spiro-fused 2-oxindoles in moderate-to-good yield and enantioselectivity (up to 81% enantiomeric excess (ee)). Herein, we report the first study accomplishing stereoselective oxidative cyclization from indole propionic acid using an organocatalyst, N-iodosuccinimide (NIS), and hydrogen peroxide under metal-free and mild reaction conditions.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 4","pages":"382-387"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143967767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential of Waste Basil Seeds for Gadolinium Ion Removal from Aqueous Solutions.","authors":"Fumihiko Ogata, Noriaki Nagai, Yugo Uematsu, Nanami Matsumoto, Chalermpong Saenjum, Naohito Kawasaki","doi":"10.1248/cpb.c25-00085","DOIUrl":"https://doi.org/10.1248/cpb.c25-00085","url":null,"abstract":"<p><p>This study examined the potential of waste basil seeds (BSs) calcined at 500°C or 1000°C (BS500 or BS1000, respectively) for gadolinium removal from aqueous solutions. Gadolinium ion adsorption onto the produced adsorbents was also assessed in relation to a number of parameters, including initial concentration, adsorption temperature, exposure time, and pH. Higher initial concentrations, adsorption temperatures, and exposure times (BS, BS500 ≒ BS1000) resulted in an increase in the quantity of adsorbed gadolinium ions; To further understand the adsorption mechanism, detailed analyses of elemental distribution and binding energy were conducted. According to the proposed mechanism, gadolinium adsorption onto BS1000 may involve an ion exchange process, wherein hydrogen ions from functional groups such carboxyl and hydroxyl groups on the surface of BS1000 are replaced by gadolinium ions. Additionally, the effects of coexisting ions on gadolinium adsorption were investigated, revealing that while monovalent cations did not impact gadolinium ion adsorption capacity, divalent and trivalent cations significantly reduced it. Finally, the desorption of gadolinium ions was tested using desorption agents such as distilled water, hydrochloric acid, and sodium hydroxide. The results revealed that a 100 mmol/L hydrochloric acid solution was particularly effective for desorbing gadolinium ions. Overall, BS1000 demonstrates promising properties as an adsorbent for gadolinium ion removal from aqueous solutions.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 5","pages":"427-433"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143974605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sana Ohashi, Sumie Ishiguro, Tsukasa Fukunaga, Akinobu Matsumoto, Mina Hirata, Masahito Inagaki, Naoko Abe, Fumitaka Hashiya, Hiroshi Abe
{"title":"Selection of Short 5'-UTR of Chemically Synthesized mRNA to Improve Translation Efficiency.","authors":"Sana Ohashi, Sumie Ishiguro, Tsukasa Fukunaga, Akinobu Matsumoto, Mina Hirata, Masahito Inagaki, Naoko Abe, Fumitaka Hashiya, Hiroshi Abe","doi":"10.1248/cpb.c25-00048","DOIUrl":"https://doi.org/10.1248/cpb.c25-00048","url":null,"abstract":"<p><p>The advent of mRNA medicine, initially implemented as a vaccine during the coronavirus disease 2019 (COVID-19) pandemic, has attracted interest in diverse therapeutic applications, including cancer vaccines and protein replacement therapies. Our group recently established a method for the complete chemical synthesis of mRNA. Although this approach has some advantages, chemically synthesized mRNA is limited to approximately 150 nucleotides in length and necessitates optimized designs for untranslated regions (UTRs) and coding sequences. To address this challenge, we investigated whether the non-reporter-based selection methods, including ribosome profiling and polysome profiling, which were often used for UTR optimization in long mRNA, could be adapted for short mRNA to identify highly translated UTR sequences. Using these methods, we collected mRNAs that interacted with ribosomes and analyzed their 5'-UTR sequences. We successfully identified a 9-nucleotide 5'-UTR that demonstrated approximately double the translation efficiency of the Kozak sequence, a widely used positive control. This work highlights the adaptability of ribosome-focused selection techniques for short, chemically synthesized mRNA and provides a foundation for effective sequence design. These findings advance the development of chemically synthesized mRNA as a viable alternative to in vitro-transcribed mRNA, paving the way for innovative therapeutic applications.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 5","pages":"449-456"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144092974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Teleocidin Analogs Isolated from Streptomyces eurocidicus as Membrane-Vesicle-Regulated Natural Products.","authors":"Aya Yoshimura, Ryusuke Nakada, Toshiyuki Wakimoto","doi":"10.1248/cpb.c25-00197","DOIUrl":"https://doi.org/10.1248/cpb.c25-00197","url":null,"abstract":"<p><p>Four teleocidin analogs were isolated from Streptomyces eurocidicus, along with teleocidin B3. A combination of MS and NMR analyses elucidated their structures, revealing teleocidin A2 acetate and teleocidin B3 acetate as newly isolated metabolites. Teleocidins A2 and B3, known metabolites, exhibited weak antibacterial activities against Kocuria rhizophila and Bacillus subtilis. Notably, membrane vesicles of Burkholderia multivorans modulated the production levels of teleocidin analogs in S. eurocidicus, upregulating teleocidin biosynthesis but downregulating the subsequent acetylation step.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 5","pages":"478-483"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144118942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward the Synthesis of Strychnos Alkaloids: Effective Construction of Fused Cyclohexane and Pyrrolidine Portion of the Strychnos Skeleton via Domino Intermolecular and Intramolecular S<sub>N</sub>2 Cyclization.","authors":"Tadahiro Hosoda, Tomohiro Tsutsumi, Ichiro Hayakawa","doi":"10.1248/cpb.c24-00783","DOIUrl":"10.1248/cpb.c24-00783","url":null,"abstract":"<p><p>A method for preparing the fused cyclohexane and pyrrolidine portion of the strychnos skeleton has been developed using domino intermolecular and intramolecular S<sub>N</sub>2 cyclization. Using this method, the formation of pyrrolidine proceeded smoothly with good yield without the E2 elimination product. This reaction condition is effective for synthesizing the fused cyclohexane and pyrrolidine portion of the strychnos skeleton.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 1","pages":"46-57"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of a Stable Indomethacin Supersaturated Solution Using Hydrophobically Modified Hydroxypropylmethylcellulose and α-Cyclodextrin.","authors":"Hiroki Akahoshi, Fumitoshi Hirayama, Kenjirou Higashi, Daisuke Iohara","doi":"10.1248/cpb.c24-00748","DOIUrl":"10.1248/cpb.c24-00748","url":null,"abstract":"<p><p>In the present study, the stability of a supersaturated solution of indomethacin (IM) was evaluated in hydrophobically modified hydroxypropylmethylcellulose (HM-HPMC) solutions, with and without parent cyclodextrins (CDs). A highly supersaturated state of IM was maintained in the HM-HPMC solution and was further stabilized by the addition of α-CD and β-CD. Notably, the highest level of supersaturation was achieved in HM-HPMC/α-CD solution, which maintained a high concentration of IM for up to 120 h. IM concentrations in these solutions exceeded the amorphous solubility, indicating that phase separation had occurred. To explore this phase separation, Nile Red, a fluorescent probe sensitive to hydrophobic environments, was added to the supersaturated solutions. A higher fluorescence intensity was observed in the HM-HPMC/α-CD solution compared with the HM-HPMC solution, indicating a significant formation of colloidal amorphous aggregates in the supersaturated solution. Cryogenic transmission electron microscopy (Cryo TEM) analysis confirmed the presence of these aggregates, which appeared irregularly shaped. These findings suggest that the combination of HM-HPMC and α-CD effectively stabilized the colloidal amorphous aggregates in the IM supersaturated solution. The addition of α-CD facilitated the dissociation of HM-HPMC into smaller particles, increasing the number of hydrophobic stearyl moieties available for interactions with amorphous IM aggregates, thereby enhancing the stability of the supersaturated state. The combination of HM-HPMC and α-CD offers a promising approach to improving the oral bioavailability of drugs with poor water solubility.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 1","pages":"39-45"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyaluronan Tetrasaccharides Penetrate into the Skin by Passive Diffusion and Contribute to Skin Health.","authors":"Yutaka Takagi, Madoka Kage","doi":"10.1248/cpb.c23-00909","DOIUrl":"10.1248/cpb.c23-00909","url":null,"abstract":"<p><p>Hyaluronan (HA) is a commonly used material in cosmetics and pharmaceuticals because of its various pharmacological activities. However, because of its large molecular weight, HA penetrates the skin very poorly and most of it remains on the skin surface. Thus, topically applied HA could not be expected to function biologically in the skin. However, we have confirmed that HA tetrasaccharides (HA4), which is the smallest unit of HA, penetrate into the skin by passive diffusion and affect epidermal metabolism. Topical treatment of HA4 rescues the epidermal damage caused by long-term UVA irradiation. Furthermore, various biological functions of HA4 to maintain healthy skin was observed in cell culture studies. This review describes the skin permeability of HA4 and how it contributes to healthy skin.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 4","pages":"284-290"},"PeriodicalIF":1.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143771452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}