Sana Ohashi, Sumie Ishiguro, Tsukasa Fukunaga, Akinobu Matsumoto, Mina Hirata, Masahito Inagaki, Naoko Abe, Fumitaka Hashiya, Hiroshi Abe
{"title":"Selection of Short 5'-UTR of Chemically Synthesized mRNA to Improve Translation Efficiency.","authors":"Sana Ohashi, Sumie Ishiguro, Tsukasa Fukunaga, Akinobu Matsumoto, Mina Hirata, Masahito Inagaki, Naoko Abe, Fumitaka Hashiya, Hiroshi Abe","doi":"10.1248/cpb.c25-00048","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of mRNA medicine, initially implemented as a vaccine during the coronavirus disease 2019 (COVID-19) pandemic, has attracted interest in diverse therapeutic applications, including cancer vaccines and protein replacement therapies. Our group recently established a method for the complete chemical synthesis of mRNA. Although this approach has some advantages, chemically synthesized mRNA is limited to approximately 150 nucleotides in length and necessitates optimized designs for untranslated regions (UTRs) and coding sequences. To address this challenge, we investigated whether the non-reporter-based selection methods, including ribosome profiling and polysome profiling, which were often used for UTR optimization in long mRNA, could be adapted for short mRNA to identify highly translated UTR sequences. Using these methods, we collected mRNAs that interacted with ribosomes and analyzed their 5'-UTR sequences. We successfully identified a 9-nucleotide 5'-UTR that demonstrated approximately double the translation efficiency of the Kozak sequence, a widely used positive control. This work highlights the adaptability of ribosome-focused selection techniques for short, chemically synthesized mRNA and provides a foundation for effective sequence design. These findings advance the development of chemically synthesized mRNA as a viable alternative to in vitro-transcribed mRNA, paving the way for innovative therapeutic applications.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 5","pages":"449-456"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c25-00048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of mRNA medicine, initially implemented as a vaccine during the coronavirus disease 2019 (COVID-19) pandemic, has attracted interest in diverse therapeutic applications, including cancer vaccines and protein replacement therapies. Our group recently established a method for the complete chemical synthesis of mRNA. Although this approach has some advantages, chemically synthesized mRNA is limited to approximately 150 nucleotides in length and necessitates optimized designs for untranslated regions (UTRs) and coding sequences. To address this challenge, we investigated whether the non-reporter-based selection methods, including ribosome profiling and polysome profiling, which were often used for UTR optimization in long mRNA, could be adapted for short mRNA to identify highly translated UTR sequences. Using these methods, we collected mRNAs that interacted with ribosomes and analyzed their 5'-UTR sequences. We successfully identified a 9-nucleotide 5'-UTR that demonstrated approximately double the translation efficiency of the Kozak sequence, a widely used positive control. This work highlights the adaptability of ribosome-focused selection techniques for short, chemically synthesized mRNA and provides a foundation for effective sequence design. These findings advance the development of chemically synthesized mRNA as a viable alternative to in vitro-transcribed mRNA, paving the way for innovative therapeutic applications.
期刊介绍:
The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below.
Topics: Organic chemistry
In silico science
Inorganic chemistry
Pharmacognosy
Health statistics
Forensic science
Biochemistry
Pharmacology
Pharmaceutical care and science
Medicinal chemistry
Analytical chemistry
Physical pharmacy
Natural product chemistry
Toxicology
Environmental science
Molecular and cellular biology
Biopharmacy and pharmacokinetics
Pharmaceutical education
Chemical biology
Physical chemistry
Pharmaceutical engineering
Epidemiology
Hygiene
Regulatory science
Immunology and microbiology
Clinical pharmacy
Miscellaneous.