Cell and Tissue Research最新文献

筛选
英文 中文
Development of branchial ionocytes in embryonic and larval stages of cloudy catshark, Scyliorhinus torazame. 云纹猫鼬胚胎期和幼虫期支离子细胞的发育。
IF 3.2 3区 生物学
Cell and Tissue Research Pub Date : 2024-08-01 Epub Date: 2024-05-15 DOI: 10.1007/s00441-024-03897-4
Mayu Inokuchi, Yumiko Someya, Keitaro Endo, Katsunori Kamioka, Wataru Katano, Wataru Takagi, Yuki Honda, Nobuhiro Ogawa, Kazuko Koshiba-Takeuchi, Ritsuko Ohtani-Kaneko, Susumu Hyodo
{"title":"Development of branchial ionocytes in embryonic and larval stages of cloudy catshark, Scyliorhinus torazame.","authors":"Mayu Inokuchi, Yumiko Someya, Keitaro Endo, Katsunori Kamioka, Wataru Katano, Wataru Takagi, Yuki Honda, Nobuhiro Ogawa, Kazuko Koshiba-Takeuchi, Ritsuko Ohtani-Kaneko, Susumu Hyodo","doi":"10.1007/s00441-024-03897-4","DOIUrl":"10.1007/s00441-024-03897-4","url":null,"abstract":"<p><p>In teleost fish, branchial ionocytes are important sites for osmoregulation and acid-base regulation by maintaining ionic balance in the body fluid. During the early developmental stages before the formation of the gills, teleost ionocytes are localized in the yolk-sac membrane and body skin. By comparing with teleost fish, much less is known about ionocytes in developing embryos of elasmobranch fish. The present study investigated the development of ionocytes in the embryo and larva of cloudy catshark, Scyliorhinus torazame. We first observed ionocyte distribution by immunohistochemical staining with anti-Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) and anti-vacuolar-type H<sup>+</sup>-ATPase (V-ATPase) antibodies. The NKA- and V-ATPase-rich ionocytes appeared as single cells in the gill filaments from stage 31, the stage of pre-hatching, while the ionocytes on the body skin and yolk-sac membrane were also observed. From stage 32, in addition to single ionocytes on the gill filaments, some outstanding follicular structures of NKA-immunoreactive cells were developed to fill the inter-filament region of the gill septa. The follicular ionocytes possess NKA in the basolateral membrane and Na<sup>+</sup>/H<sup>+</sup> exchanger 3 in the apical membrane, indicating that they are involved in acid-base regulation like single NKA-rich ionocytes. Three-dimensional analysis and whole-mount immunohistochemistry revealed that the distribution of follicular ionocytes was limited to the rostral side of gill septum. The rostral sides of gill septum might be exposed to faster water flow than caudal side because the gills of sharks gently curved backward. This dissymmetric distribution of follicular ionocytes is considered to facilitate efficient body-fluid homeostasis of catshark embryo.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"81-95"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitric oxide mediated kisspeptin regulation of steroidogenesis and gametogenesis in the catfish, Clarias batrachus. 一氧化氮介导的吻肽对鲶鱼类固醇生成和配子生成的调节作用
IF 3.2 3区 生物学
Cell and Tissue Research Pub Date : 2024-08-01 Epub Date: 2024-06-03 DOI: 10.1007/s00441-024-03899-2
Ankur Singh, Bechan Lal, Pankaj Kumar, Ishwar S Parhar, Robert P Millar
{"title":"Nitric oxide mediated kisspeptin regulation of steroidogenesis and gametogenesis in the catfish, Clarias batrachus.","authors":"Ankur Singh, Bechan Lal, Pankaj Kumar, Ishwar S Parhar, Robert P Millar","doi":"10.1007/s00441-024-03899-2","DOIUrl":"10.1007/s00441-024-03899-2","url":null,"abstract":"<p><p>Nitric oxide (NO) is a gaseous molecule that regulates various reproductive functions. It is a well-recognized regulator of GnRH-FSH/LH-sex steroid secretion in vertebrates including fish. Kisspeptin is a recently discovered neuropeptide which also regulates GnRH secretion. Nitrergic and kisspeptin neurons are reported in close physical contact in the mammalian brain suggesting their interactive role in the release of GnRH. The existence of kisspeptin and NOS is also demonstrated in vertebrate gonads, but information on their reciprocal relation in gonads, if any, is obscure. Therefore, attempts were made to evaluate the functional reciprocal relation between nitric oxide and kisspeptin in the catfish gonads, if any, by administering the nitric oxide synthase (NOS) inhibitor, L-NAME {N(G)-nitro-L-arginine methyl ester}, which reduces NO production, and kisspeptin agonist (KP-10) and assessing their impacts on the expressions of kisspeptin1, different NOS isoforms, NO and steroid production in the gonadal tissue. The results revealed that L-NAME suppressed the expression of kiss1 in gonads of the catfish establishing the role of NO in kisspeptin expression. However, KP-10 increased the expression of all the isoforms of NOSs (iNOS, eNOS, nNOS) and concurrently NO and steroids in the ovary and testis. In vitro studies also indicate that kisspeptin stimulates the production of NO and estradiol and testosterone levels in the gonadal explants and medium. Thus, in vivo results clearly suggest a reciprocal interaction between kisspeptin and NO to regulate the gonadal activity of the catfish. The in vitro findings further substantiate our contention regarding the interactive role of kisspeptin and NO in gonadal steroidogenesis.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"111-124"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anatomical and molecular insights into the antennal gland of the giant freshwater prawn Macrobrachium rosenbergii. 巨型淡水对虾触角腺的解剖学和分子学研究。
IF 3.2 3区 生物学
Cell and Tissue Research Pub Date : 2024-08-01 Epub Date: 2024-06-15 DOI: 10.1007/s00441-024-03898-3
Thanapong Kruangkum, Kornchanok Jaiboon, Phakkhananan Pakawanit, Jirawat Saetan, Arnon Pudgerd, Suttipong Wannapaiboon, Charoonroj Chotwiwatthanakun, Scott F Cummins, Prasert Sobhon, Rapeepun Vanichviriyakit
{"title":"Anatomical and molecular insights into the antennal gland of the giant freshwater prawn Macrobrachium rosenbergii.","authors":"Thanapong Kruangkum, Kornchanok Jaiboon, Phakkhananan Pakawanit, Jirawat Saetan, Arnon Pudgerd, Suttipong Wannapaiboon, Charoonroj Chotwiwatthanakun, Scott F Cummins, Prasert Sobhon, Rapeepun Vanichviriyakit","doi":"10.1007/s00441-024-03898-3","DOIUrl":"10.1007/s00441-024-03898-3","url":null,"abstract":"<p><p>In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"125-146"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrastructural analysis and 3D reconstruction of the frontal sensory-glandular complex and its neural projections in the platyhelminth Macrostomum lignano. 额感觉-腺复合体及其神经投射的超微结构分析和三维重建。
IF 3.2 3区 生物学
Cell and Tissue Research Pub Date : 2024-08-01 Epub Date: 2024-06-20 DOI: 10.1007/s00441-024-03901-x
Maria Del Mar de Miguel Bonet, Volker Hartenstein
{"title":"Ultrastructural analysis and 3D reconstruction of the frontal sensory-glandular complex and its neural projections in the platyhelminth Macrostomum lignano.","authors":"Maria Del Mar de Miguel Bonet, Volker Hartenstein","doi":"10.1007/s00441-024-03901-x","DOIUrl":"10.1007/s00441-024-03901-x","url":null,"abstract":"<p><p>The marine microturbellarian Macrostomum lignano (Platyhelminthes, Rhabditophora) is an emerging laboratory model used by a growing community of researchers because it is easy to cultivate, has a fully sequenced genome, and offers multiple molecular tools for its study. M. lignano has a compartmentalized brain that receives sensory information from receptors integrated in the epidermis. Receptors of the head, as well as accompanying glands and specialized epidermal cells, form a compound sensory structure called the frontal glandular complex. In this study, we used semi-serial transmission electron microscopy (TEM) to document the types, ultrastructure, and three-dimensional architecture of the cells of the frontal glandular complex. We distinguish a ventral compartment formed by clusters of type 1 (multiciliated) sensory receptors from a central domain where type 2 (collar) sensory receptors predominate. Six different types of glands (rhammite glands, mucoid glands, glands with aster-like and perimaculate granula, vacuolated glands, and buckle glands) are closely associated with type 1 sensory receptors. Endings of a seventh type of gland (rhabdite gland) define a dorsal domain of the frontal glandular complex. A pair of ciliary photoreceptors is closely associated with the base of the frontal glandular complex. Bundles of dendrites, connecting the receptor endings with their cell bodies which are located in the brain, form the (frontal) peripheral nerves. Nerve fibers show a varicose structure, with thick segments alternating with thin segments, and are devoid of a glial layer. This distinguishes platyhelminths from larger and/or more complex invertebrates whose nerves are embedded in prominent glial sheaths.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"147-177"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The saccus vasculosus of the neotropical cichlid fish Cichlasoma dimerus: characterization, developmental studies and its response to photoperiod. 新热带慈鲷的血管囊:特征、发育研究及其对光周期的反应。
IF 3.2 3区 生物学
Cell and Tissue Research Pub Date : 2024-08-01 Epub Date: 2024-05-21 DOI: 10.1007/s00441-024-03895-6
Julieta Emilse Sallemi, María Paula Di Yorio, Gladys Noemí Hermida, Andrés Breccia, Ariadna Gabriela Battista, Paula Gabriela Vissio
{"title":"The saccus vasculosus of the neotropical cichlid fish Cichlasoma dimerus: characterization, developmental studies and its response to photoperiod.","authors":"Julieta Emilse Sallemi, María Paula Di Yorio, Gladys Noemí Hermida, Andrés Breccia, Ariadna Gabriela Battista, Paula Gabriela Vissio","doi":"10.1007/s00441-024-03895-6","DOIUrl":"10.1007/s00441-024-03895-6","url":null,"abstract":"<p><p>The saccus vasculosus is an organ present in gnathostome fishes, located ventral to the hypothalamus and posterior to the pituitary gland, whose structure is highly variable among species. In some fishes, this organ is well-developed; however, its physiological function is still under debate. Recently, it has been proposed that this organ is a seasonal regulator of reproduction. In the present work, we examined the histology, ultrastructure, and development of the saccus vasculosus in Cichlasoma dimerus. In addition, immunohistochemical studies of proteins related to reproductive function were performed. Finally, the potential response of this organ to different photoperiods was explored. C. dimerus presented a well-developed saccus vasculosus consisting of a highly folded epithelium, composed of coronet and supporting cells, closely associated with blood vessels, and a highly branched lumen connected to the third ventricle. Coronet cells showed all the major characteristics described in other fish species. In addition, some of the vesicles of the globules were positive for thyrotropin beta subunit, while luteinizing hormone beta subunit immunostaining was observed at the edge of the apical processes of some coronet cells. Furthermore, neuropeptide Y and gonadotropin inhibitory hormone innervation in the saccus vasculosus of C. dimerus were shown. Finally, animals exposed to the long photoperiod showed lower levels of thyrotropin beta and common alpha subunits expression in the saccus compared to those of animals exposed to short photoperiod. All these results support the hypothesis that the saccus vasculosus is involved in the regulation of reproductive function in fish.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"97-110"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular characterization and distribution of motilin and motilin receptor in the Japanese medaka Oryzias latipes. 日本青鳉体内动情素和动情素受体的分子特征和分布。
IF 3.2 3区 生物学
Cell and Tissue Research Pub Date : 2024-07-01 Epub Date: 2024-05-10 DOI: 10.1007/s00441-024-03896-5
Morio Azuma, Norifumi Konno, Ichiro Sakata, Taka-Aki Koshimizu, Hiroyuki Kaiya
{"title":"Molecular characterization and distribution of motilin and motilin receptor in the Japanese medaka Oryzias latipes.","authors":"Morio Azuma, Norifumi Konno, Ichiro Sakata, Taka-Aki Koshimizu, Hiroyuki Kaiya","doi":"10.1007/s00441-024-03896-5","DOIUrl":"10.1007/s00441-024-03896-5","url":null,"abstract":"<p><p>Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"61-76"},"PeriodicalIF":3.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes from adipose-derived stem cells activate sebocytes through the PI3K/AKT/SREBP-1 pathway to accelerate wound healing. 脂肪来源干细胞的外泌体通过PI3K/AKT/SREBP-1途径激活皮脂腺细胞,加速伤口愈合。
IF 3.6 3区 生物学
Cell and Tissue Research Pub Date : 2024-06-01 Epub Date: 2024-02-27 DOI: 10.1007/s00441-024-03872-z
Yingbo Zhang, Christos C Zouboulis, Zhibo Xiao
{"title":"Exosomes from adipose-derived stem cells activate sebocytes through the PI3K/AKT/SREBP-1 pathway to accelerate wound healing.","authors":"Yingbo Zhang, Christos C Zouboulis, Zhibo Xiao","doi":"10.1007/s00441-024-03872-z","DOIUrl":"10.1007/s00441-024-03872-z","url":null,"abstract":"<p><p>Sebocyte regeneration after injury is considered a key element of functional skin repair. Exosomes from adipose-derived stem cells (ADSCs-EXO) accelerate wound healing by promoting the proliferation of fibroblasts. However, the effects of ADSCs-EXO on sebocytes are largely unknown. In this study, the effects of ADSCs-EXO on sebocyte proliferation and migration were evaluated. The levels of phosphorylated AKT (p-AKT), AKT, sterol regulatory-element binding protein (SREBP), and perilipin-1 (PLIN-1) were detected with immunofluorescence, quantitative PCR, and western blot analysis. RNA-Seq was used to analyze the differential gene expression between the ADSCs-EXO group and the control group under anaerobic conditions. Lipogenesis was assessed with Nile red staining. In animal studies, full-thickness skin wounds in BALB/c mice were treated with gelatin methacrylate (GelMA) hydrogel-loaded sebocytes alone or in combination with ADSCs-EXO. Histopathological assessments of the wound tissues were performed Masson Trichrome staining, Immunohistochemical staining and so on. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway blocker LY294002 inhibited the effects of ADSCs-EXO on p-AKT and sebocytes proliferation. ADSCs-EXO also regulated the expression of SREBP-1 and PLIN-1 through the PI3K/AKT pathway in an oxygen level-dependent manner. In BALB/c mice, ADSCs-EXO accelerated sebocyte-assisted wound healing and regeneration. These in vitro and in vivo results supported that ADSCs-EXO can promote the regeneration of fully functional skin after injury through the PI3K/AKT-dependent activation of sebocytes.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"329-342"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of vitamin D receptor in predentin mineralization and dental repair after injury. 维生素 D 受体在前牙素矿化和损伤后牙齿修复中的作用。
IF 3.6 3区 生物学
Cell and Tissue Research Pub Date : 2024-06-01 Epub Date: 2024-03-16 DOI: 10.1007/s00441-024-03886-7
Yudong Liu, Yinlin Wu, Xiaodong Hu, Yu Sun, Guojin Zeng, Qinglong Wang, Shanshan Liu, Meiqun Sun
{"title":"The role of vitamin D receptor in predentin mineralization and dental repair after injury.","authors":"Yudong Liu, Yinlin Wu, Xiaodong Hu, Yu Sun, Guojin Zeng, Qinglong Wang, Shanshan Liu, Meiqun Sun","doi":"10.1007/s00441-024-03886-7","DOIUrl":"10.1007/s00441-024-03886-7","url":null,"abstract":"<p><p>Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr<sup>-/-</sup>) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr<sup>-/-</sup> mice. The finding revealed a thicker predentin in Vdr<sup>-/-</sup> mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr<sup>-/-</sup> mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr<sup>-/-</sup> mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr<sup>-/-</sup> mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr<sup>-/-</sup> mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"343-351"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140140036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model. 在癫痫状态大鼠模型中以 CoQ10 为靶标的海马铁突变。
IF 3.6 3区 生物学
Cell and Tissue Research Pub Date : 2024-06-01 Epub Date: 2024-03-19 DOI: 10.1007/s00441-024-03880-z
Heba Fikry, Lobna A Saleh, Faten A Mahmoud, Sara Abdel Gawad, Hadwa Ali Abd-Alkhalek
{"title":"CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model.","authors":"Heba Fikry, Lobna A Saleh, Faten A Mahmoud, Sara Abdel Gawad, Hadwa Ali Abd-Alkhalek","doi":"10.1007/s00441-024-03880-z","DOIUrl":"10.1007/s00441-024-03880-z","url":null,"abstract":"<p><p>Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"371-397"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of A-type voltage-gated K+ currents expressed on sour-sensing type III taste receptor cells in mice. 小鼠酸味感应 III 型味觉受体细胞上表达的 A 型电压门控 K+ 电流的特征。
IF 3.6 3区 生物学
Cell and Tissue Research Pub Date : 2024-06-01 Epub Date: 2024-03-16 DOI: 10.1007/s00441-024-03887-6
Takeru Moribayashi, Yoshiki Nakao, Yoshitaka Ohtubo
{"title":"Characteristics of A-type voltage-gated K<sup>+</sup> currents expressed on sour-sensing type III taste receptor cells in mice.","authors":"Takeru Moribayashi, Yoshiki Nakao, Yoshitaka Ohtubo","doi":"10.1007/s00441-024-03887-6","DOIUrl":"10.1007/s00441-024-03887-6","url":null,"abstract":"<p><p>Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K<sup>+</sup> currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K<sup>+</sup> currents in taste buds remain unclear. Here, we examined the electrophysiological properties of A-type K<sup>+</sup> currents in mouse fungiform taste bud cells using in-situ whole-cell patch clamping. Type III cells were identified with SNAP-25 immunoreactivity and/or electrophysiological features of voltage-gated currents. Type III cells expressed A-type K<sup>+</sup> currents which were completely inhibited by 10 mM TEA, whereas IP<sub>3</sub>R3-immunoreactive type II cells did not. The half-maximal activation and steady-state inactivation of A-type K<sup>+</sup> currents were 17.9 ± 4.5 (n = 17) and - 11.0 ± 5.7 (n = 17) mV, respectively, which are similar to the features of Kv3.3 and Kv3.4 channels (transient and high voltage-activated K<sup>+</sup> channels). The recovery from inactivation was well fitted with a double exponential equation; the fast and slow time constants were 6.4 ± 0.6 ms and 0.76 ± 0.26 s (n = 6), respectively. RT-PCR experiments suggest that Kv3.3 and Kv3.4 mRNAs were detected at the taste bud level, but not at single-cell levels. As the phosphorylation of Kv3.3 and Kv3.4 channels generally leads to the modulation of cell excitability, neuromodulator-mediated A-type K<sup>+</sup> channel phosphorylation likely affects the signal transduction of taste.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"353-369"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140140035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信