{"title":"CRISPR-based genetic screens in human pluripotent stem cells derived neurons and brain organoids.","authors":"Yu Guo, Xinyu Zhao","doi":"10.1007/s00441-024-03934-2","DOIUrl":null,"url":null,"abstract":"<p><p>Recent large-scale genome-wide association and single-cell RNA sequencing (scRNA-seq) studies have uncovered disease-associated genetic risk factors and cell type-specific genetic alterations. However, our understanding of how these genetic variants cause diseases and the underlying mechanisms remains largely unknown. Functional genomics screens using CRISPR-based technologies offer an effective tool for studying genes relevant to disease phenotypes. Here, we summarize recent CRISPR-based functional genomics screen approaches applied to human pluripotent stem cell (hPSC)-derived neurons and brain organoids. These screens have identified genes crucial for neurogenesis, neuronal survival, morphological development, and migration. Combining CRISPR-based genetic screens with scRNA-seq, researchers have revealed downstream genes and cellular pathways impacted by these genetic variants in human neural cells, providing new insights into the pathogenesis of neurodevelopmental disorders, such as microcephaly and autism spectrum disorders. Finally, we discuss current challenges and future directions for using CRISPR-based screens in furthering our understanding of neurological diseases and developing potential therapeutic strategies. Despite challenges, CRISPR-based screens have enormous potential for advancing the therapeutic development of many diseases.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03934-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent large-scale genome-wide association and single-cell RNA sequencing (scRNA-seq) studies have uncovered disease-associated genetic risk factors and cell type-specific genetic alterations. However, our understanding of how these genetic variants cause diseases and the underlying mechanisms remains largely unknown. Functional genomics screens using CRISPR-based technologies offer an effective tool for studying genes relevant to disease phenotypes. Here, we summarize recent CRISPR-based functional genomics screen approaches applied to human pluripotent stem cell (hPSC)-derived neurons and brain organoids. These screens have identified genes crucial for neurogenesis, neuronal survival, morphological development, and migration. Combining CRISPR-based genetic screens with scRNA-seq, researchers have revealed downstream genes and cellular pathways impacted by these genetic variants in human neural cells, providing new insights into the pathogenesis of neurodevelopmental disorders, such as microcephaly and autism spectrum disorders. Finally, we discuss current challenges and future directions for using CRISPR-based screens in furthering our understanding of neurological diseases and developing potential therapeutic strategies. Despite challenges, CRISPR-based screens have enormous potential for advancing the therapeutic development of many diseases.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.