Cell host & microbe最新文献

筛选
英文 中文
If you can’t beat them, join them: Anti-CRISPR proteins derived from CRISPR-associated genes 如果你不能打败他们,那就加入他们吧:源自CRISPR相关基因的抗CRISPR蛋白
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-11-13 DOI: 10.1016/j.chom.2024.10.009
Charlie Y. Mo
{"title":"If you can’t beat them, join them: Anti-CRISPR proteins derived from CRISPR-associated genes","authors":"Charlie Y. Mo","doi":"10.1016/j.chom.2024.10.009","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.009","url":null,"abstract":"Bacteriophages have evolved numerous mechanisms to evade targeting by CRISPR-Cas defense systems. However, the evolutionary origin of these so-called “anti-CRISPRs” remains poorly understood. In a recent issue of <em>Nature</em>, Katz et al.<span><span><sup>1</sup></span></span> provide evidence that some anti-CRISPRs were derived from genes of the CRISPR-Cas systems themselves.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"2 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mRNA vaccines: A promising platform for safer, more effective next-generation Orthopoxvirus immunization mRNA 疫苗:更安全、更有效的下一代正畸病毒免疫平台前景广阔
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-11-13 DOI: 10.1016/j.chom.2024.10.014
Xiaonan Han, Qingrui Huang, Jinghua Yan
{"title":"mRNA vaccines: A promising platform for safer, more effective next-generation Orthopoxvirus immunization","authors":"Xiaonan Han, Qingrui Huang, Jinghua Yan","doi":"10.1016/j.chom.2024.10.014","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.014","url":null,"abstract":"In recent work, Mucker et al.<span><span><sup>1</sup></span></span> demonstrated that mRNA-1769 outperforms modified vaccinia Ankara (MVA), which has been deployed against recent mpox virus (MPXV) outbreaks, in reducing clinical symptoms and controlling viral replication, highlighting its potential as a scalable, safe, and effective next-generation platform for orthopoxvirus vaccination.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"35 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiota-induced alteration of kynurenine metabolism in macrophages drives formation of creeping fat in Crohn’s disease 微生物诱导的巨噬细胞犬尿氨酸代谢改变促使克罗恩病中爬行脂肪的形成
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-11-13 DOI: 10.1016/j.chom.2024.10.008
Jinjie Wu, Wanyi Zeng, Hongyu Xie, Mujia Cao, Jingyi Yang, Yanchun Xie, Zhanhao Luo, Zongjin Zhang, Haoyang Xu, Weidong Huang, Tingyue Zhou, Jinyu Tan, Xiaomin Wu, Zihuan Yang, Shu Zhu, Ren Mao, Zhen He, Ping Lan
{"title":"Microbiota-induced alteration of kynurenine metabolism in macrophages drives formation of creeping fat in Crohn’s disease","authors":"Jinjie Wu, Wanyi Zeng, Hongyu Xie, Mujia Cao, Jingyi Yang, Yanchun Xie, Zhanhao Luo, Zongjin Zhang, Haoyang Xu, Weidong Huang, Tingyue Zhou, Jinyu Tan, Xiaomin Wu, Zihuan Yang, Shu Zhu, Ren Mao, Zhen He, Ping Lan","doi":"10.1016/j.chom.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.008","url":null,"abstract":"Hyperplasia of mesenteric tissues in Crohn’s disease, called creeping fat (CrF), is associated with surgical recurrence. Although microbiota translocation and colonization have been found in CrF, convincing mouse phenotypes and the underlying mechanisms of CrF formation remain unclear. Utilizing single-nucleus RNA (snRNA) sequencing of CrF and different mouse models, we demonstrate that the commensal <em>Achromobacter pulmonis</em> induces mesenteric adipogenesis through macrophage alteration. Targeted metabolome analysis reveals that L-kynurenine is the most enriched metabolite in CrF. Upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) enhances kynurenine metabolism and drives mesenteric adipogenesis. Leveraging single-cell RNA (scRNA) sequencing of mouse mesenteric tissues and macrophage-specific IDO1 knockout mice, we verify the role of macrophage-sourced L-kynurenine in mesenteric adipogenesis. Mechanistically, L-kynurenine-induced adipogenesis is mediated by the aryl hydrocarbon receptors in adipocytes. Administration of an IDO1 inhibitor or bacteria engineered to degrade L-kynurenine alleviates mesenteric adipogenesis in mice. Collectively, our study demonstrates that microbiota-induced modulation of macrophage metabolism potentiates CrF formation.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"7 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial alchemists unlock honeybee cognition 微生物炼金术士开启蜜蜂的认知能力
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-11-13 DOI: 10.1016/j.chom.2024.10.013
Huihui Sun, Guan-Hong Wang
{"title":"Microbial alchemists unlock honeybee cognition","authors":"Huihui Sun, Guan-Hong Wang","doi":"10.1016/j.chom.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.013","url":null,"abstract":"In this issue of <em>Cell Host &amp; Microbe</em>, Zhong et al.<span><span><sup>1</sup></span></span> uncover gut microbiota-host connections that promote cognitive function in honeybees. They discover the role of the microbiota in lipid metabolism and the synthesis of lipid-derived neurotransmitters, which modulate the endocannabinoid system.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"36 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta-carbolines suppress vaginal inflammation β-碳酸氢盐抑制阴道炎症
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-11-13 DOI: 10.1016/j.chom.2024.10.005
Cancan Qi, Ri-hua Xie, Yan He, Muxuan Chen
{"title":"Beta-carbolines suppress vaginal inflammation","authors":"Cancan Qi, Ri-hua Xie, Yan He, Muxuan Chen","doi":"10.1016/j.chom.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.005","url":null,"abstract":"Vaginal lactobacilli are key regulators of host inflammation, yet the mechanisms remain understudied. In this issue of <em>Cell Host &amp; Microbe</em>, Glick et al. identify a family of beta-carbolines as anti-inflammatory effectors produced by vaginal <em>Lactobacillus</em> species, highlighting their potential as therapeutics for vaginal inflammatory disorders.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"95 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A prophage competition element protects Salmonella from lysis 噬菌体竞争元件保护沙门氏菌不被溶解
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-11-07 DOI: 10.1016/j.chom.2024.10.012
Molly R. Sargen, Sophie Helaine
{"title":"A prophage competition element protects Salmonella from lysis","authors":"Molly R. Sargen, Sophie Helaine","doi":"10.1016/j.chom.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.012","url":null,"abstract":"Most bacteria are polylysogens that carry multiple prophages integrated into the chromosome. These prophages confer advantages to their bacterial host, yet also pose a lethal threat as they can reactivate and enter a lytic cycle. DNA damage of the bacterial host is a common trigger of prophage lytic cycles. Because DNA damage is frequently experienced by bacterial pathogens exposed to host immune defenses, prophage activation may be common during infection. Investigating the consequences of prophage induction in <em>Salmonella</em>, we discover a prophage competition element in the Gifsy-1 prophage that we name ribonuclease effector module with ATPase, inhibitor, and nuclease (RemAIN) because it blocks the lytic cycles and release of viral particles of co-resident prophages. Intramacrophage <em>Salmonella</em> persisters, a subpopulation that incurs DNA damage, experience prophage reactivation and subsequent RemAIN activation, which influences <em>Salmonella</em> persisters and macrophage response to infection. Our findings reveal a multi-layered host-pathogen arms race in which prophage-prophage competition influences bacterial persistence and the mammalian immune response.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"64 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal analysis of the gut microbiota during anti-PD-1 therapy reveals stable microbial features of response in melanoma patients 抗 PD-1 治疗期间肠道微生物群的纵向分析揭示了黑色素瘤患者反应的稳定微生物特征
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-30 DOI: 10.1016/j.chom.2024.10.006
Angeli D.G. Macandog, Carlotta Catozzi, Mariaelena Capone, Amir Nabinejad, Padma P. Nanaware, Shujing Liu, Smita Vinjamuri, Johanna A. Stunnenberg, Serena Galiè, Maria Giovanna Jodice, Francesca Montani, Federica Armanini, Ester Cassano, Gabriele Madonna, Domenico Mallardo, Benedetta Mazzi, Salvatore Pece, Maria Tagliamonte, Vito Vanella, Massimo Barberis, Luigi Nezi
{"title":"Longitudinal analysis of the gut microbiota during anti-PD-1 therapy reveals stable microbial features of response in melanoma patients","authors":"Angeli D.G. Macandog, Carlotta Catozzi, Mariaelena Capone, Amir Nabinejad, Padma P. Nanaware, Shujing Liu, Smita Vinjamuri, Johanna A. Stunnenberg, Serena Galiè, Maria Giovanna Jodice, Francesca Montani, Federica Armanini, Ester Cassano, Gabriele Madonna, Domenico Mallardo, Benedetta Mazzi, Salvatore Pece, Maria Tagliamonte, Vito Vanella, Massimo Barberis, Luigi Nezi","doi":"10.1016/j.chom.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.006","url":null,"abstract":"Immune checkpoint inhibitors (ICIs) improve outcomes in advanced melanoma, but many patients are refractory or experience relapse. The gut microbiota modulates antitumor responses. However, inconsistent baseline predictors point to heterogeneity in responses and inadequacy of cross-sectional data. We followed patients with unresectable melanoma from baseline and during anti-PD-1 therapy, collecting fecal and blood samples that were surveyed for changes in the gut microbiota and immune markers. Varying patient responses were linked to different gut microbiota dynamics during ICI treatment. We select complete responders by their stable microbiota functions and validate them using multiple external cohorts and experimentally. We identify major histocompatibility complex class I (MHC class I)-restricted peptides derived from flagellin-related genes of <em>Lachnospiraceae</em> (<em>FLach</em>) as structural homologs of tumor-associated antigens, detect <em>FLach</em>-reactive CD8<sup>+</sup> T cells in complete responders before ICI therapy, and demonstrate that <em>FLach</em> peptides improve antitumor immunity. These findings highlight the prognostic value of microbial functions and therapeutic potential of tumor-mimicking microbial peptides.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"62 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of Mycobacterium tuberculosis genomes reveals genetic variations in bacterial virulence 结核分枝杆菌基因组综合分析揭示了细菌毒力的遗传变异
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-28 DOI: 10.1016/j.chom.2024.10.004
Wittawin Worakitchanon, Hideki Yanai, Pundharika Piboonsiri, Reiko Miyahara, Supalert Nedsuwan, Worarat Imsanguan, Boonchai Chaiyasirinroje, Waritta Sawaengdee, Sukanya Wattanapokayakit, Nuanjan Wichukchinda, Yosuke Omae, Prasit Palittapongarnpim, Katsushi Tokunaga, Surakameth Mahasirimongkol, Akihiro Fujimoto
{"title":"Comprehensive analysis of Mycobacterium tuberculosis genomes reveals genetic variations in bacterial virulence","authors":"Wittawin Worakitchanon, Hideki Yanai, Pundharika Piboonsiri, Reiko Miyahara, Supalert Nedsuwan, Worarat Imsanguan, Boonchai Chaiyasirinroje, Waritta Sawaengdee, Sukanya Wattanapokayakit, Nuanjan Wichukchinda, Yosuke Omae, Prasit Palittapongarnpim, Katsushi Tokunaga, Surakameth Mahasirimongkol, Akihiro Fujimoto","doi":"10.1016/j.chom.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.004","url":null,"abstract":"Tuberculosis, a disease caused by <em>Mycobacterium tuberculosis</em> (<em>Mtb</em>), is a significant health problem worldwide. Here, we developed a method to detect large insertions and deletions (indels), which have been generally understudied. Leveraging this framework, we performed a comprehensive analysis of single nucleotide variants and small and large indels across 1,960 <em>Mtb</em> clinical isolates. Comparing the distribution of variants demonstrated that gene disruptive variants are underrepresented in genes essential for bacterial survival. An evolutionary analysis revealed that <em>Mtb</em> genomes are enriched in partially deleterious mutations. Genome-wide association studies identified small and large deletions in <em>eccB2</em> significantly associated with patient prognosis. Additionally, we unveil significant associations with antibiotic resistance in 23 non-canonical genes. Among these, large indels are primarily found in genetic regions of <em>Rv1216c</em>, <em>Rv1217c</em>, <em>fadD11</em>, and <em>ctpD</em>. This study provides a comprehensive catalog of genetic variations and highlights their potential impact for the future treatment and risk prediction of tuberculosis.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"35 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metatranscriptomics-guided discovery and characterization of a polyphenol-metabolizing gut microbial enzyme 元转录组学指导下的多酚代谢肠道微生物酶的发现与表征
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-28 DOI: 10.1016/j.chom.2024.10.002
Minwoo Bae, Chi Le, Raaj S. Mehta, Xueyang Dong, Lindsey M. Pieper, Lorenzo Ramirez, Margaret Alexander, Sina Kiamehr, Peter J. Turnbaugh, Curtis Huttenhower, Andrew T. Chan, Emily P. Balskus
{"title":"Metatranscriptomics-guided discovery and characterization of a polyphenol-metabolizing gut microbial enzyme","authors":"Minwoo Bae, Chi Le, Raaj S. Mehta, Xueyang Dong, Lindsey M. Pieper, Lorenzo Ramirez, Margaret Alexander, Sina Kiamehr, Peter J. Turnbaugh, Curtis Huttenhower, Andrew T. Chan, Emily P. Balskus","doi":"10.1016/j.chom.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.002","url":null,"abstract":"Gut microbial catechol dehydroxylases are a largely uncharacterized family of metalloenzymes that potentially impact human health by metabolizing dietary polyphenols. Here, we use metatranscriptomics (MTX) to identify highly transcribed catechol-dehydroxylase-encoding genes in human gut microbiomes. We discover a prevalent, previously uncharacterized catechol dehydroxylase (<em>Gp</em> Hcdh) from <em>Gordonibacter pamelaeae</em> that dehydroxylates hydrocaffeic acid (HCA), an anti-inflammatory gut microbial metabolite derived from plant-based foods. Further analyses suggest that the activity of <em>Gp</em> Hcdh may reduce anti-inflammatory benefits of polyphenol-rich foods. Together, these results show the utility of combining MTX analysis and biochemical characterization for gut microbial enzyme discovery and reveal a potential link between host inflammation and a specific polyphenol-metabolizing gut microbial enzyme.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"33 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exclusive enteral nutrition initiates individual protective microbiome changes to induce remission in pediatric Crohn’s disease 纯肠内营养启动个体保护性微生物组变化,诱导小儿克罗恩病病情缓解
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-25 DOI: 10.1016/j.chom.2024.10.001
Deborah Häcker, Kolja Siebert, Byron J. Smith, Nikolai Köhler, Alessandra Riva, Aritra Mahapatra, Helena Heimes, Jiatong Nie, Amira Metwaly, Hannes Hölz, Quirin Manz, Federica De Zen, Jeannine Heetmeyer, Katharina Socas, Giang Le Thi, Chen Meng, Karin Kleigrewe, Josch K. Pauling, Klaus Neuhaus, Markus List, Dirk Haller
{"title":"Exclusive enteral nutrition initiates individual protective microbiome changes to induce remission in pediatric Crohn’s disease","authors":"Deborah Häcker, Kolja Siebert, Byron J. Smith, Nikolai Köhler, Alessandra Riva, Aritra Mahapatra, Helena Heimes, Jiatong Nie, Amira Metwaly, Hannes Hölz, Quirin Manz, Federica De Zen, Jeannine Heetmeyer, Katharina Socas, Giang Le Thi, Chen Meng, Karin Kleigrewe, Josch K. Pauling, Klaus Neuhaus, Markus List, Dirk Haller","doi":"10.1016/j.chom.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.001","url":null,"abstract":"Exclusive enteral nutrition (EEN) is a first-line therapy for pediatric Crohn’s disease (CD), but protective mechanisms remain unknown. We established a prospective pediatric cohort to characterize the function of fecal microbiota and metabolite changes of treatment-naive CD patients in response to EEN (German Clinical Trials DRKS00013306). Integrated multi-omics analysis identified network clusters from individually variable microbiome profiles, with <em>Lachnospiraceae</em> and medium-chain fatty acids as protective features. Bioorthogonal non-canonical amino acid tagging selectively identified bacterial species in response to medium-chain fatty acids. Metagenomic analysis identified high strain-level dynamics in response to EEN. Functional changes in diet-exposed fecal microbiota were further validated using gut chemostat cultures and microbiota transfer into germ-free <em>Il10</em>-deficient mice. Dietary model conditions induced individual patient-specific strain signatures to prevent or cause inflammatory bowel disease (IBD)-like inflammation in gnotobiotic mice. Hence, we provide evidence that EEN therapy operates through explicit functional changes of temporally and individually variable microbiome profiles.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"97 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信