Cellular Oncology最新文献

筛选
英文 中文
From benign neurofibromas to malignant peripheral nerve sheath tumors (MPNST): a gaming among multiple factors.
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-04-02 DOI: 10.1007/s13402-025-01054-9
Yanan Yu, Chengjiang Wei, Minghui Yue, Cheng Zhang, Yixiao Wang, Zhichao Wang
{"title":"From benign neurofibromas to malignant peripheral nerve sheath tumors (MPNST): a gaming among multiple factors.","authors":"Yanan Yu, Chengjiang Wei, Minghui Yue, Cheng Zhang, Yixiao Wang, Zhichao Wang","doi":"10.1007/s13402-025-01054-9","DOIUrl":"https://doi.org/10.1007/s13402-025-01054-9","url":null,"abstract":"<p><p>Almost all patients of Neurofibromatosis Type I (NF1) develop benign peripheral nerve tumors called neurofibromas, which are derived from neural crest Schwann cell lineage progenitors with biallelic NF1 gene mutations. More than 90% of NF1 patients develop dermal neurofibromas (DN), and 25-50% develop plexiform neurofibromas (PN). In 8-13% of individuals with NF1, PN can transform into malignant peripheral nerve sheath tumors (MPNSTs), a type of nerve soft tissue sarcoma that is the main cause of mortality of NF1 patients. In addition to arising from benign neurofibromas (50%), MPNSTs can also occur spontaneously (~40%) or following radiation therapy (~10%). Treatment for MPNST is limited to complete resection with negative margins. Still, the high recurrence of MPNST is a major concern. However, full resection of the pre-malignant lesions can largely reduce the recurrence and mortality of patients. So, early diagnosis and distinguishing malignancy from benign and premalignant lesions are particularly important. During the progression from benign neurofibromas to malignancy, a variety of changes including tumor morphology, genetic mutations, expression of multiple signaling pathways-related proteins and genome instability gradually occur. In this review, we detail these changes with the goals of identifying the histological and/or molecular signs of malignancy initiation, and an optimal therapeutic intervention window, to inhibit tumor progression and reduce the rate of mortality.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143763039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thymidine kinase 1 indicates resistance to immune checkpoint plus tyrosine kinase inhibition in renal cell carcinoma.
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-02-26 DOI: 10.1007/s13402-025-01048-7
Jiajun Wang, Xianglai Xu, Ying Wang, Yanjun Zhu
{"title":"Thymidine kinase 1 indicates resistance to immune checkpoint plus tyrosine kinase inhibition in renal cell carcinoma.","authors":"Jiajun Wang, Xianglai Xu, Ying Wang, Yanjun Zhu","doi":"10.1007/s13402-025-01048-7","DOIUrl":"https://doi.org/10.1007/s13402-025-01048-7","url":null,"abstract":"<p><strong>Purpose: </strong>Immune checkpoint plus tyrosine kinase inhibition (IO + TKI) has emerged as the first-line therapy in metastatic renal cell carcinoma (RCC), but no biomarker can predict its efficacy. Thymidine kinase 1 (TK1) is closely associated with immune evasion in tumors.</p><p><strong>Methods: </strong>Metastatic RCC patients treated by IO + TKI were enrolled from two cohorts (ZS-MRCC, n = 45; Javelin-101, n = 726). High-risk localized RCC were also enrolled (ZS-HRRCC, n = 40). TK1 was assessed by RNA-sequencing in all cohorts, and the immune contexture was assessed by flow cytometry and immunohistochemistry.</p><p><strong>Results: </strong>Higher TK1 expression was found in patients resistant to IO + TKI therapy (p = 0.025). High-TK1 group showed poor progression-free survival (PFS) in both the ZS-MRCC cohort (P = 0.008) and the Javelin-101 cohort (P = 0.036). By multivariate Cox regression, high-TK1 was determined as an independent factor for poor PFS (hazard ratio (HR) = 3.855, P = 0.002). High-TK1 expression was associated with decreased granzyme B<sup>+</sup> CD8<sup>+</sup> T cells (ρ=-0.22, P = 0.18), increased PD1<sup>+</sup> CD4<sup>+</sup> T cells (ρ = 0.33, P = 0.04), increased PDL1<sup>+</sup> macrophages (ρ = 0.45, P < 0.001), and increased regulatory T cells (ρ = 0.35, P = 0.03). A novel random forest (RF) risk score was built by machine learning based on TK1 and immunologic parameters. Combined IO + TKI therapy surpassed sunitinib monotherapy in the low RF risk score group (HR = 0.158, P < 0.001), but was inferior to sunitinib in the high RF risk score group (HR, 2.195, P < 0.001).</p><p><strong>Conclusion: </strong>High-TK1 expression could be a potential indicator for therapeutic resistance, poor PFS and immune evasion in metastatic RCC under IO + TKI therapy. The novel RF risk score may help stratify patients for IO + TKI therapy.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143499675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the prognostic significance of tumor deposits in gastric cancer and strategies for their integration into the TNM staging system: a single-center retrospective study.
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-02-17 DOI: 10.1007/s13402-025-01046-9
Jun Yu, Ruirong Yao, Ning Han, Linbin Lu, Ling Chen, Abudurousuli Reyila, Xinlin Wang, Junya Yan, Shibo Wang, Yong Guo, Qingchuan Zhao, Kaichun Wu, Yuanyuan Lu, Gang Ji, Zengshan Li, Xianchun Gao, Yongzhan Nie
{"title":"Evaluating the prognostic significance of tumor deposits in gastric cancer and strategies for their integration into the TNM staging system: a single-center retrospective study.","authors":"Jun Yu, Ruirong Yao, Ning Han, Linbin Lu, Ling Chen, Abudurousuli Reyila, Xinlin Wang, Junya Yan, Shibo Wang, Yong Guo, Qingchuan Zhao, Kaichun Wu, Yuanyuan Lu, Gang Ji, Zengshan Li, Xianchun Gao, Yongzhan Nie","doi":"10.1007/s13402-025-01046-9","DOIUrl":"https://doi.org/10.1007/s13402-025-01046-9","url":null,"abstract":"<p><strong>Purpose: </strong>To propose a new optimal strategy for incorporating tumor deposit (TD) into TNM staging.</p><p><strong>Methods: </strong>Totally, 2730 consecutive gastric cancer (GC) patients were included according to the presence and count of TDs between January 2011 and December 2014. Overall survival (OS) was analyzed using Cox regression and propensity score matching (PSM). The relationship between the number of TDs and GC patients' prognosis was analyzed using restricted cubic spline curves and compared with the prognostic value of lymph node metastases (LNMs). Harrell's C-index (C-index) and the Akaike information criterion (AIC) were employed to assess the prognostic performance of different staging systems.</p><p><strong>Results: </strong>The positive rate of TD was 9.67% (264/2730). The presence of TD was associated with poorer OS before PSM (hazard ratio (HR): 3.31; 95% confidence interval (CI): 2.84, 3.85) and after PSM (HR: 1.62; 95%CI: 1.31, 2.00). The modified TNM staging, equating one TD to four LNMs, achieved superior prognostic performance, surpassing the 8th edition AJCC TNM staging and other modified systems (C-index: 0.751, AIC: 15954.0). In this system, 12.04% (26/216) of TD-positive patients were upstaged from stage II to stage III. These upstaged patients had worse outcomes than the remaining stage II patients (HR: 10.97; 95% CI: 4.55-26.44), while outcomes were similar to those of original stage III patients (HR:1.08; 95%CI: 0.66, 1.78).</p><p><strong>Conclusion: </strong>The presence and increased number of TDs were noted to be associated with GC patients' poor prognosis. Integrating TD count with LNMs could enhance the prognostic accuracy of the TNM staging system.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction to: LPA released from dying cancer cells after chemotherapy inactivates Hippo signaling and promotes pancreatic cancer cell repopulation.
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-02-17 DOI: 10.1007/s13402-025-01047-8
Yuzhi Liu, Jie Ding, Shumin Li, Anyi Jiang, Zhiqin Chen, Ming Quan
{"title":"Publisher Correction to: LPA released from dying cancer cells after chemotherapy inactivates Hippo signaling and promotes pancreatic cancer cell repopulation.","authors":"Yuzhi Liu, Jie Ding, Shumin Li, Anyi Jiang, Zhiqin Chen, Ming Quan","doi":"10.1007/s13402-025-01047-8","DOIUrl":"https://doi.org/10.1007/s13402-025-01047-8","url":null,"abstract":"","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: TRAIL enhances quinacrine-mediated apoptosis in breast cancer cells through induction of autophagy via modulation of p21 and DR5 interactions.
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-02-12 DOI: 10.1007/s13402-025-01045-w
Sarita Das, Anmada Nayak, Sumit Siddharth, Deepika Nayak, Satya Narayan, Chanakya Nath Kundu
{"title":"Retraction Note: TRAIL enhances quinacrine-mediated apoptosis in breast cancer cells through induction of autophagy via modulation of p21 and DR5 interactions.","authors":"Sarita Das, Anmada Nayak, Sumit Siddharth, Deepika Nayak, Satya Narayan, Chanakya Nath Kundu","doi":"10.1007/s13402-025-01045-w","DOIUrl":"https://doi.org/10.1007/s13402-025-01045-w","url":null,"abstract":"","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of histone deubiquitinase Bap1 triggers anti-tumor immunity. 组蛋白去泛素化酶Bap1的缺失会引发抗肿瘤免疫。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-02-01 Epub Date: 2024-08-14 DOI: 10.1007/s13402-024-00978-y
Hong Chang, Mingxia Li, Linlin Zhang, Meng Li, Swee Hoe Ong, Zhiwei Zhang, Jie Zheng, Xiang Xu, Yu Zhang, Jing Wang, Xingjie Liu, Kairui Li, Yao Luo, Haiyun Wang, Zhichao Miao, Xi Chen, Jie Zha, Yong Yu
{"title":"Loss of histone deubiquitinase Bap1 triggers anti-tumor immunity.","authors":"Hong Chang, Mingxia Li, Linlin Zhang, Meng Li, Swee Hoe Ong, Zhiwei Zhang, Jie Zheng, Xiang Xu, Yu Zhang, Jing Wang, Xingjie Liu, Kairui Li, Yao Luo, Haiyun Wang, Zhichao Miao, Xi Chen, Jie Zha, Yong Yu","doi":"10.1007/s13402-024-00978-y","DOIUrl":"10.1007/s13402-024-00978-y","url":null,"abstract":"<p><strong>Purpose: </strong>Immunotherapy using PD-L1 blockade is effective in only a small group of cancer patients, and resistance is common. This emphasizes the importance of understanding the mechanisms of cancer immune evasion and resistance.</p><p><strong>Methods: </strong>A genome-scale CRISPR-Cas9 screen identified Bap1 as a regulator of PD-L1 expression. To measure tumor size and survival, tumor cells were subcutaneously injected into both syngeneic WT mice and immunocompromised mice. The phenotypic and transcriptional characteristics of Bap1-deleted tumors were examined using flow cytometry, RNA-seq, and CUT&Tag-seq analysis.</p><p><strong>Results: </strong>We found that loss of histone deubiquitinase Bap1 in cancer cells activates a cDC1-CD8<sup>+</sup> T cell-dependent anti-tumor immunity. The absence of Bap1 leads to an increase in genes associated with anti-tumor immune response and a decrease in genes related to immune evasion. As a result, the tumor microenvironment becomes inflamed, with more cDC1 cells and effector CD8<sup>+</sup> T cells, but fewer neutrophils and regulatory T cells. We also found that the elimination of Bap1-deleted tumors depends on the tumor MHCI molecule and Fas-mediated CD8<sup>+</sup> T cell cytotoxicity. Our analysis of TCGA data further supports these findings, showing a reverse correlation between BAP1 expression and mRNA signatures of activated DCs and T-cell cytotoxicity in various human cancers.</p><p><strong>Conclusion: </strong>The histone deubiquitinase Bap1 could be used as a biomarker for tumor stratification and as a potential therapeutic target for cancer immunotherapies.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"183-203"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. 肿瘤微环境的酸度和缺氧是肿瘤细胞释放细胞外囊泡的积极相互作用。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-02-01 Epub Date: 2024-07-18 DOI: 10.1007/s13402-024-00969-z
Silvia Peppicelli, Lido Calorini, Francesca Bianchini, Laura Papucci, Lucia Magnelli, Elena Andreucci
{"title":"Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells.","authors":"Silvia Peppicelli, Lido Calorini, Francesca Bianchini, Laura Papucci, Lucia Magnelli, Elena Andreucci","doi":"10.1007/s13402-024-00969-z","DOIUrl":"10.1007/s13402-024-00969-z","url":null,"abstract":"<p><p>The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"27-41"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppressing SENP1 inhibits esophageal squamous carcinoma cell growth via SIRT6 SUMOylation. 抑制 SENP1 可通过 SIRT6 SUMOylation 抑制食管鳞癌细胞生长
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-02-01 Epub Date: 2024-07-02 DOI: 10.1007/s13402-024-00956-4
Jianmin Gu, Shaoyuan Zhang, Dong Lin, Wenhan Wang, Jinke Cheng, Quan Zheng, Hao Wang, Lijie Tan
{"title":"Suppressing SENP1 inhibits esophageal squamous carcinoma cell growth via SIRT6 SUMOylation.","authors":"Jianmin Gu, Shaoyuan Zhang, Dong Lin, Wenhan Wang, Jinke Cheng, Quan Zheng, Hao Wang, Lijie Tan","doi":"10.1007/s13402-024-00956-4","DOIUrl":"10.1007/s13402-024-00956-4","url":null,"abstract":"<p><strong>Purpose: </strong>Esophageal squamous cell carcinoma (ESCC) is a prevalent tumor in the gastrointestinal tract, but our understanding of the molecular mechanisms underlying ESCC remains incomplete. Existing studies indicate that SUMO specific peptidase 1 (SENP1) plays a crucial role in the development and progression of various malignant tumors through diverse molecular mechanisms. However, the functional mechanism and clinical implications of SENP1 in the progression of ESCC remain unclear.</p><p><strong>Methods: </strong>Bulk RNA-Sequencing (RNA-seq) was used to compare potential genes in the esophageal tissues of mice with ESCC to the control group. The up-regulated SENP1 was selected. The protein level of SENP1 in ESCC patient samples was analyzed by immunohistochemistry and western blot. The potential prognostic value of SENP1 on overall survival of ESCC patients was examined using tissue microarray analysis and the Kaplan-Meier method. The biological function was confirmed through in vitro and in vivo knockdown approaches of SENP1. The role of SENP1 in cell cycle progression and apoptosis of ESCC cells was analyzed by flow cytometry and western blot. The downstream signaling pathways regulated by SENP1 were investigated via using RNA-Seq. SENP1-associated proteins were identified through immunoprecipitation. Overexpression of Sirtuin 6 (SIRT6) wildtype and mutant was performed to investigate the regulatory role of SENP1 in ESCC progression in vitro.</p><p><strong>Results: </strong>Our study discovered that SENP1 was upregulated in ESCC tissues and served as a novel prognostic factor. Moreover, SENP1 enhanced cell proliferation and migration of ESCC cell lines in vitro, as well as promoted tumor growth in vivo. Thymidine kinase 1 (TK1), Geminin (GMNN), cyclin dependent kinase 1(CDK1), and cyclin A2 (CCNA2) were identified as downstream genes of SENP1. Mechanistically, SENP1 deSUMOylated SIRT6 and subsequently inhibited SIRT6-mediated histone 3 lysine 56 (H3K56) deacetylation on those downstream genes. SIRT6 SUMOylation mutant (4KR) rescued the growth inhibition upon SENP1 depletion.</p><p><strong>Conclusions: </strong>SENP1 promotes the malignant progression of ESCC by inhibiting the deacetylase activity of SIRT6 pathway through deSUMOylation. Our findings suggest that SENP1 may serve as a valuable biomarker for prognosis and a target for therapeutic intervention in ESCC.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"67-81"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antitumor activity of afatinib in EGFR T790M-negative human oral cancer therapeutically targets mTOR/Mcl-1 signaling axis. 阿法替尼对表皮生长因子受体(EGFR)T790M阴性人类口腔癌的抗肿瘤活性以mTOR/Mcl-1信号轴为治疗靶点。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-02-01 Epub Date: 2024-06-18 DOI: 10.1007/s13402-024-00962-6
Jung-Min Han, Kyu-Young Oh, Su-Jung Choi, Won-Woo Lee, Bo-Hwan Jin, Ji-Hoon Kim, Hyun-Ju Yu, Ryan Jin Young Kim, Hye-Jung Yoon, Jae-Il Lee, Seong-Doo Hong, Sung-Dae Cho
{"title":"Antitumor activity of afatinib in EGFR T790M-negative human oral cancer therapeutically targets mTOR/Mcl-1 signaling axis.","authors":"Jung-Min Han, Kyu-Young Oh, Su-Jung Choi, Won-Woo Lee, Bo-Hwan Jin, Ji-Hoon Kim, Hyun-Ju Yu, Ryan Jin Young Kim, Hye-Jung Yoon, Jae-Il Lee, Seong-Doo Hong, Sung-Dae Cho","doi":"10.1007/s13402-024-00962-6","DOIUrl":"10.1007/s13402-024-00962-6","url":null,"abstract":"<p><strong>Purpose: </strong>This study investigates the role and effectiveness of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in oral cancer, focusing on the clinical relevance of EGFR and myeloid cell leukemia-1 (Mcl-1) in head and neck cancers (HNCs). It aims to explore the molecular mechanism of afatinib, a TKI, in treating human oral cancer.</p><p><strong>Methods: </strong>We conducted an in silico analysis using databases like The Cancer Genome Atlas, Gene Expression Omnibus, and Clinical Proteomic Tumor Analysis Consortium, along with immunohistochemistry staining, to study EGFR and Mcl-1 expression in HNCs. For investigating afatinib's anticancer properties, we performed various in vitro and in vivo analyses, including trypan blue exclusion assay, Western blotting, 4'-6-diamidino-2-phenylindole staining, flow cytometry, quantitative real-time PCR, Mitochondrial membrane potential assay, overexpression vector construction, transient transfection, and a tumor xenograft model.</p><p><strong>Results: </strong>Higher expression levels of EGFR and Mcl-1 were observed in HNC patient tissues compared to normal tissues, with their co-expression significantly linked to poor prognosis. There was a strong correlation between EGFR and Mcl-1 expressions in oral cancer patients. Afatinib treatment induced apoptosis and suppressed Mcl-1 in oral cancer cell lines without the EGFR T790M mutation. The mechanism of afatinib-induced apoptosis involved the EGFR/mTOR/Mcl-1 axis, as shown by the effects of mTOR activator MHY1485 and inhibitor rapamycin. Afatinib also increased Bim expression, mitochondrial membrane permeabilization, and cytochrome c release. It significantly lowered tumor volume without affecting body, liver, and kidney weights.</p><p><strong>Conclusion: </strong>Afatinib, targeting the EGFR/mTOR/Mcl-1 axis, shows promise as a therapeutic strategy for oral cancer, especially in patients with high EGFR and Mcl-1 expressions.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"123-138"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fasting in combination with the cocktail Sorafenib:Metformin blunts cellular plasticity and promotes liver cancer cell death via poly-metabolic exhaustion. 禁食与索拉非尼:二甲双胍鸡尾酒结合使用,会削弱细胞的可塑性,并通过多代谢衰竭促进肝癌细胞死亡。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2025-02-01 Epub Date: 2024-07-11 DOI: 10.1007/s13402-024-00966-2
Juan L López-Cánovas, Beatriz Naranjo-Martínez, Alberto Diaz-Ruiz
{"title":"Fasting in combination with the cocktail Sorafenib:Metformin blunts cellular plasticity and promotes liver cancer cell death via poly-metabolic exhaustion.","authors":"Juan L López-Cánovas, Beatriz Naranjo-Martínez, Alberto Diaz-Ruiz","doi":"10.1007/s13402-024-00966-2","DOIUrl":"10.1007/s13402-024-00966-2","url":null,"abstract":"<p><strong>Purpose: </strong>Dual-Interventions targeting glucose and oxidative metabolism are receiving increasing attention in cancer therapy. Sorafenib (S) and Metformin (M), two gold-standards in liver cancer, are known for their mitochondrial inhibitory capacity. Fasting, a glucose-limiting strategy, is also emerging as chemotherapy adjuvant. Herein, we explore the anti-carcinogenic response of nutrient restriction in combination with sorafenib:metformin (NR-S:M).</p><p><strong>Results: </strong>Our data demonstrates that, independently of liver cancer aggressiveness, fasting synergistically boosts the anti-proliferative effects of S:M co-treatment. Metabolic and Cellular plasticity was determined by the examination of mitochondrial and glycolytic activity, cell cycle modulation, activation of cellular apoptosis, and regulation of key signaling and metabolic enzymes. Under NR-S:M conditions, early apoptotic events and the pro-apoptotic Bcl-xS/Bcl-xL ratio were found increased. NR-S:M induced the highest retention in cellular SubG1 phase, consistent with the presence of DNA fragments from cellular apoptosis. Mitochondrial functionality, Mitochondrial ATP-linked respiration, Maximal respiration and Spare respiratory capacity, were all found blunted under NR-S:M conditions. Basal Glycolysis, Glycolytic reserve, and glycolytic capacity, together with the expression of glycogenic (PKM), gluconeogenic (PCK1 and G6PC3), and glycogenolytic enzymes (PYGL, PGM1, and G6PC3), were also negatively impacted by NR-S:M. Lastly, a TMT-proteomic approach corroborated the synchronization of liver cancer metabolic reprogramming with the activation of molecular pathways to drive a quiescent-like status of energetic-collapse and cellular death.</p><p><strong>Conclusion: </strong>Altogether, we show that the energy-based polytherapy NR-S:M blunts cellular, metabolic and molecular plasticity of liver cancer. Notwithstanding the in vitro design of this study, it holds a promising therapeutic tool worthy of exploration for this tumor pathology.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"161-182"},"PeriodicalIF":6.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信