{"title":"Development of a <sup>177</sup>Lu-labeled EphA2-targeting cyclic peptide combined with an HPK1 inhibitor for synergistic anti-tumor effects.","authors":"Meng-Jie Zhang, Yirong Chen, Caixia Zhang, Xiaofeng Bian, Xiangyang Zhang, Shijia Huang, Bowen Yang, Siyan Lu, Xueting Fu, Wei Zhao, Xu-Dong Kong, Shuli Zhao","doi":"10.1007/s13402-025-01105-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Despite advancements in <sup>177</sup>Lu-based radiotherapy for cancer, its efficacy against refractory cold tumors remains limited. Targeted peptide-radionuclide conjugates (PRCs) combined with immunotherapy are emerging as promising theranostic strategies to maximize anti-tumor effectiveness.</p><p><strong>Methods: </strong>Cyclic peptide CEMJ4 was identified via phage selection, and further conjugated with DOTA and radiolabeled with <sup>68</sup>Ga for diagnostic imaging and <sup>177</sup>Lu for cancer therapy. The druggability was assessed by in vitro cell experiments, in vivo PET/CT imaging and biodistribution. Additionally, the feasibility of combining <sup>177</sup>Lu-DOTA-CEMJ4 with a hematopoietic progenitor kinase 1 inhibitor (HPK1i) was evaluated in B16F10 tumor-bearing mice, focusing on the anti-tumor immune response and tumor growth.</p><p><strong>Results: </strong>CEMJ4 exhibited high affinity for human erythropoietin-producing hepatocellular receptor A2 (EphA2; K<sub>D</sub> = 0.3 ± 0.2 µM), a therapeutic target overexpressed in several solid tumors. Radiolabeled <sup>68</sup>Ga/<sup>177</sup>Lu-DOTA-CEMJ4 specifically bound to EphA2-expressing B16F10 cells and tumor models, effectively inhibiting tumor growth. Notably, <sup>177</sup>Lu-induced T cell immunotoxicity was reversed by HPK1i, which modulated T cell dysfunction. Combining <sup>177</sup>Lu-DOTA-CEMJ4 with HPK1i significantly reduced tumor burden and increased tumor-infiltrating CD4<sup>+</sup> T cells, CD8<sup>+</sup> T cells, and M1 macrophages.</p><p><strong>Conclusion: </strong>This study identifies CEMJ4 as a promising peptide ligand for tumor-targeted radionuclide delivery and emphasizes the clinical potential of radionuclide therapy combined with immunotherapy in theranostics to enhance therapeutic precision and efficacy.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01105-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Despite advancements in 177Lu-based radiotherapy for cancer, its efficacy against refractory cold tumors remains limited. Targeted peptide-radionuclide conjugates (PRCs) combined with immunotherapy are emerging as promising theranostic strategies to maximize anti-tumor effectiveness.
Methods: Cyclic peptide CEMJ4 was identified via phage selection, and further conjugated with DOTA and radiolabeled with 68Ga for diagnostic imaging and 177Lu for cancer therapy. The druggability was assessed by in vitro cell experiments, in vivo PET/CT imaging and biodistribution. Additionally, the feasibility of combining 177Lu-DOTA-CEMJ4 with a hematopoietic progenitor kinase 1 inhibitor (HPK1i) was evaluated in B16F10 tumor-bearing mice, focusing on the anti-tumor immune response and tumor growth.
Results: CEMJ4 exhibited high affinity for human erythropoietin-producing hepatocellular receptor A2 (EphA2; KD = 0.3 ± 0.2 µM), a therapeutic target overexpressed in several solid tumors. Radiolabeled 68Ga/177Lu-DOTA-CEMJ4 specifically bound to EphA2-expressing B16F10 cells and tumor models, effectively inhibiting tumor growth. Notably, 177Lu-induced T cell immunotoxicity was reversed by HPK1i, which modulated T cell dysfunction. Combining 177Lu-DOTA-CEMJ4 with HPK1i significantly reduced tumor burden and increased tumor-infiltrating CD4+ T cells, CD8+ T cells, and M1 macrophages.
Conclusion: This study identifies CEMJ4 as a promising peptide ligand for tumor-targeted radionuclide delivery and emphasizes the clinical potential of radionuclide therapy combined with immunotherapy in theranostics to enhance therapeutic precision and efficacy.
Cellular OncologyBiochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.