Cellular Oncology最新文献

筛选
英文 中文
The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis. 长非编码 RNA NEAT1 在胰腺癌中导致 STAT3 信号异常,并受金属蛋白酶-二整合蛋白 ADAM8/miR-181a-5p 轴的调控。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-16 DOI: 10.1007/s13402-024-01001-0
Yutong Gao, Kimia Zandieh, Kai Zhao, Natalia Khizanishvili, Pietro Di Fazio, Xiangdi Yu, Leon Schulte, Michelle Aillaud, Ho-Ryun Chung, Zachary Ball, Marion Meixner, Uta-Maria Bauer, Detlef Klaus Bartsch, Malte Buchholz, Matthias Lauth, Christopher Nimsky, Lena Cook, Jörg W Bartsch
{"title":"The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis.","authors":"Yutong Gao, Kimia Zandieh, Kai Zhao, Natalia Khizanishvili, Pietro Di Fazio, Xiangdi Yu, Leon Schulte, Michelle Aillaud, Ho-Ryun Chung, Zachary Ball, Marion Meixner, Uta-Maria Bauer, Detlef Klaus Bartsch, Malte Buchholz, Matthias Lauth, Christopher Nimsky, Lena Cook, Jörg W Bartsch","doi":"10.1007/s13402-024-01001-0","DOIUrl":"https://doi.org/10.1007/s13402-024-01001-0","url":null,"abstract":"<p><strong>Purpose: </strong>Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis.</p><p><strong>Methods: </strong>TCGA, microarray, and immunohistochemistry data from a PDAC cohort were used for clinical analyses. Panc89 cells with ADAM8 knockout, re-expression of ADAM8 mutants, and Panc1 cells overexpressing ADAM8 were generated. Gene expression analyses of ADAM8, STAT3, long non-coding (lnc) RNA NEAT1, miR-181a-5p and ICAM1 were performed by quantitative PCR. Subcellular fractionation quantified NEAT1 expression in cytoplasm and nucleus of PDAC cell lines. Cell proliferation, scratch, and invasion assays were performed to detect growth rate, migration and invasion capabilities of cells. Gain and loss of function experiments were carried out to investigate the biological effects of lncRNA NEAT1 and miR-181a-5p on PDAC cells and downstream genes. Dual-luciferase reporter gene assay determined interaction and binding sites of miR-181a-5p in lncRNA NEAT1. Pull down assays, RNA binding protein immunoprecipitation (RIP), and ubiquitination assays explored the molecular interaction between lncRNA NEAT1 and STAT3.</p><p><strong>Results: </strong>High ADAM8 expression causes aberrant STAT3 signaling in PDAC cells and is positively correlated with NEAT1 expression. NEAT1 binding to STAT3 was confirmed and prevents STAT3 degradation in the proteasome as increased degradation of STAT3 was observed in ADAM8 knockout cells and cells treated with bortezomib. Furthermore, miRNA-181a-5p regulates NEAT1 expression by direct binding to the NEAT1 promoter.</p><p><strong>Conclusion: </strong>ADAM8 regulates intracellular STAT3 levels via miR-181a-5p and NEAT1 in pancreatic cancer.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BCAT1 contributes to the development of TKI-resistant CML. BCAT1 是 TKI 抗性 CML 的形成原因之一。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-16 DOI: 10.1007/s13402-024-01003-y
Yu Jiang, Difan Zhang, Xiaoxiao He, Chiqi Chen, Li Xie, Ligen Liu, Zhuo Yu, Yaping Zhang, Junke Zheng, Dan Huang
{"title":"BCAT1 contributes to the development of TKI-resistant CML.","authors":"Yu Jiang, Difan Zhang, Xiaoxiao He, Chiqi Chen, Li Xie, Ligen Liu, Zhuo Yu, Yaping Zhang, Junke Zheng, Dan Huang","doi":"10.1007/s13402-024-01003-y","DOIUrl":"https://doi.org/10.1007/s13402-024-01003-y","url":null,"abstract":"<p><strong>Purpose: </strong>Although most of chronic myeloid leukemia (CML) patients can be effectively treated by the tyrosine kinase inhibitors (TKIs), such as Imatinib, TKI-resistance still occurs in approximately 15-17% of cases. Although many studies indicate that branched chain amino acid (BCAA) metabolism may contribute to the TKI resistance in CML, the detailed mechanisms remains largely unknown.</p><p><strong>Method: </strong>The cell proliferation, colony formation and in vivo transplantation were used to determined the functions of BCAT1 in leukemogenesis. Quantitative real-time PCR (RT-PCR), western blotting, RNA sequencing, BCAA stimulation in vitro were applied to characterize the underlying molecular mechanism that control the leukemogenic activity of BCAT1-knockdown cells.</p><p><strong>Results: </strong>In this report, we revealed that branched chain amino acid transaminase 1 (BCAT1) is highly enriched in both mouse and human TKI-resistant CML cells. Leukemia was almost completely abrogated upon BCAT1 knockdown during transplantation in a BCR-ABL<sup>T315I</sup>-induced murine TKI-resistant CML model. Moreover, knockdown of BCAT1 led to a dramatic decrease in the proliferation of TKI-resistant human leukemia cell lines. BCAA/BCAT1 signaling enhanced the phosphorylation of CREB, which is required for maintenance of TKI-resistant CML cells. Importantly, blockade of BCAA/BCAT1 signaling efficiently inhibited leukemogenesis both in vivo and in vitro.</p><p><strong>Conclusions: </strong>These findings demonstrate the role of BCAA/BCAT1 signaling in cancer development and suggest that targeting BCAA/BCAT1 signaling is a potential strategy for interfering with TKI-resistant CML.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue. 整合体细胞和单细胞转录组学,阐明自噬在衰老组织中的作用和潜在机制。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-16 DOI: 10.1007/s13402-024-00996-w
Zhenhua Zhu, Linsen Li, Youqiong Ye, Qing Zhong
{"title":"Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue.","authors":"Zhenhua Zhu, Linsen Li, Youqiong Ye, Qing Zhong","doi":"10.1007/s13402-024-00996-w","DOIUrl":"https://doi.org/10.1007/s13402-024-00996-w","url":null,"abstract":"<p><strong>Purpose: </strong>Autophagy is frequently observed in tissues during the aging process, yet the tissues most strongly correlated with autophagy during aging and the underlying regulatory mechanisms remain inadequately understood. The purpose of this study is to identify the tissues with the highest correlation between autophagy and aging, and to explore the functions and mechanisms of autophagy in the aging tissue microenvironment.</p><p><strong>Methods: </strong>Integrated bulk RNA-seq from over 7000 normal tissue samples, single-cell sequencing data from blood samples of different ages, more than 2000 acute myeloid leukemia (AML) bulk RNA-seq, and multiple sets of AML single-cell data. The datasets were analysed using various bioinformatic approaches.</p><p><strong>Results: </strong>Blood tissue exhibited the highest positive correlation between autophagy and aging among healthy tissues. Single-cell resolution analysis revealed that in aged blood, classical monocytes (C. monocytes) are most closely associated with elevated autophagy levels. Increased autophagy in these monocytes correlated with a higher proportion of C. monocytes, with hypoxia identified as a crucial contributing factor. In AML, a representative myeloid blood disease, enhanced autophagy was accompanied by an increased proportionof C. monocytes. High autophagy levels in monocytes are associated with pro-inflammatory gene upregulation and Reactive Oxygen Species (ROS) accumulation, contributing to tissue aging.</p><p><strong>Conclusion: </strong>This study revealed that autophagy is most strongly correlated with aging in blood tissue. Enhanced autophagy levels in C. monocytes demonstrate a positive correlation with increased secretion of pro-inflammatory factors and elevated production of ROS, which may contribute to a more rapid aging process. This discovery underscores the critical role of autophagy in blood aging and suggests potential therapeutic targets to mitigate aging-related health issues.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALKBH4 functions as a hypoxia-responsive tumor suppressor and inhibits metastasis and tumorigenesis. ALKBH4 是一种低氧反应性肿瘤抑制因子,可抑制转移和肿瘤发生。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-14 DOI: 10.1007/s13402-024-01004-x
Ji-Lin Chen, Pei-Hua Peng, Han-Tsang Wu, Dar-Ren Chen, Ching-Yun Hsieh, Jeng-Shou Chang, Joseph Lin, Huan-Yu Lin, Kai-Wen Hsu
{"title":"ALKBH4 functions as a hypoxia-responsive tumor suppressor and inhibits metastasis and tumorigenesis.","authors":"Ji-Lin Chen, Pei-Hua Peng, Han-Tsang Wu, Dar-Ren Chen, Ching-Yun Hsieh, Jeng-Shou Chang, Joseph Lin, Huan-Yu Lin, Kai-Wen Hsu","doi":"10.1007/s13402-024-01004-x","DOIUrl":"https://doi.org/10.1007/s13402-024-01004-x","url":null,"abstract":"<p><strong>Purpose: </strong>The human AlkB homolog (ALKBH) dioxygenase superfamily plays a crucial role in gene regulation and is implicated in cancer progression. Under hypoxic conditions, hypoxia-inducible factors (HIFs) dynamically regulate methylation by controlling various dioxygenases, thereby modulating gene expression. However, the role of hypoxia-responsive AlkB dioxygenase remains unclear.</p><p><strong>Methods: </strong>The molecular events were examined using real-time PCR and Western blot analysis. Tumor cell aggressiveness was evaluated through migration, invasion, MTT, trypan blue exclusion, and colony formation assays. In vivo metastatic models and xenograft experiments were conducted to evaluate tumor progression.</p><p><strong>Results: </strong>Here, we examined the expression of the ALKBH superfamily under hypoxic conditions and found that ALKBH4 expression was negatively regulated by hypoxia. Knockdown of ALKBH4 enhanced the epithelial-mesenchymal transition (EMT), cell migration, invasion, and growth in vitro. The silencing of ALKBH4 enhanced metastatic ability and tumor growth in vivo. Conversely, overexpression of ALLKBH4 reversed these observations. Furthermore, overexpression of ALKBH4 significantly reversed hypoxia/HIF-1α-induced EMT, cell migration, invasion, tumor metastasis, and tumorigenicity. Notably, high expression of ALKBH4 was associated with better outcomes in head and neck cancer and breast cancer patients. Enrichment analysis also revealed that ALKBH4 was negatively enriched in hypoxia-related pathways. Clinically, a negative correlation between ALKBH4 and HIF-1α protein expression has been observed in tissues from both head and neck cancers and breast cancers.</p><p><strong>Conclusion: </strong>These findings collectively suggest that ALKBH4 acts as a tumor suppressor and holds therapeutic potential for hypoxic tumors.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting the Notch-Furin axis with 2-hydroxyoleic acid: a key mechanism in glioblastoma therapy. 用 2-hydroxyoleic acid 靶向 Notch-Furin 轴:胶质母细胞瘤治疗的关键机制。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-14 DOI: 10.1007/s13402-024-00995-x
Raquel Rodríguez-Lorca, Ramón Román, Roberto Beteta-Göbel, Manuel Torres, Victoria Lladó, Pablo V Escribá, Paula Fernández-García
{"title":"Targeting the Notch-Furin axis with 2-hydroxyoleic acid: a key mechanism in glioblastoma therapy.","authors":"Raquel Rodríguez-Lorca, Ramón Román, Roberto Beteta-Göbel, Manuel Torres, Victoria Lladó, Pablo V Escribá, Paula Fernández-García","doi":"10.1007/s13402-024-00995-x","DOIUrl":"https://doi.org/10.1007/s13402-024-00995-x","url":null,"abstract":"<p><strong>Purpose: </strong>Glioblastomas (GBMs) are highly treatment-resistant and aggressive brain tumors. 2OHOA, which is currently running a phase IIB/III clinical trial for newly diagnosed GBM patients, was developed in the context of melitherapy. This therapy focuses on the regulation of the membrane's structure and organization with the consequent modulation of certain cell signals to revert the pathological state in several disorders. Notch signaling has been associated with tumorigenesis and cell survival, potentially driving the pathogenesis of GBM. The current study aims to determine whether 2OHOA modulates the Notch pathway as part of its antitumoral mechanism.</p><p><strong>Methods: </strong>2OHOA's effect was evaluated on different components of the pathway by Western blot, Q-PCR, and confocal microscopy. Notch receptor processing was analyzed by subcellular fractionation and colocalization studies. Furin activity was evaluated under cleavage of its substrate by fluorescence assays and its binding affinity to 2OHOA was determined by surface plasmon resonance.</p><p><strong>Results: </strong>We found that 2OHOA inhibits Notch2 and Notch3 signaling by dual mechanism. Notch2 inhibition is unleashed by impairment of its processing through the inactivation of furin activity by physical association. Instead, Notch3 is transcriptionally downregulated leading to a lower activation of the pathway. Moreover, we also found that HES1 overexpression highlighted the relevance of this pathway in the 2OHOA pharmacological efficacy.</p><p><strong>Conclusion: </strong>These findings report that the inhibition of Notch signaling by 2OHOA plays a role in its anti-tumoral activity, an effect that may be driven through direct inhibition of furin, characterizing a novel target of this bioactive lipid to treat GBM.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumour cell-released autophagosomes promote lung metastasis by upregulating PD-L1 expression in pulmonary vascular endothelial cells in breast cancer. 肿瘤细胞释放的自噬体通过上调乳腺癌肺血管内皮细胞中PD-L1的表达促进肺转移
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-07 DOI: 10.1007/s13402-024-00994-y
Xu-Ru Wang, Xiao-He Zhou, Xiao-Tong Sun, Yu-Qing Shen, Yu-Yang Wu, Cheng-Dong Wu, Feng-Jiao Zhu, Yi-Ting Wei, Jin-Peng Chen, Jing Chen, Shi-Ya Zheng, Li-Xin Wang
{"title":"Tumour cell-released autophagosomes promote lung metastasis by upregulating PD-L1 expression in pulmonary vascular endothelial cells in breast cancer.","authors":"Xu-Ru Wang, Xiao-He Zhou, Xiao-Tong Sun, Yu-Qing Shen, Yu-Yang Wu, Cheng-Dong Wu, Feng-Jiao Zhu, Yi-Ting Wei, Jin-Peng Chen, Jing Chen, Shi-Ya Zheng, Li-Xin Wang","doi":"10.1007/s13402-024-00994-y","DOIUrl":"https://doi.org/10.1007/s13402-024-00994-y","url":null,"abstract":"<p><strong>Purpose: </strong>Establishing an immunosuppressive premetastatic niche (PMN) in distant organs is crucial for breast cancer metastasis. Vascular endothelial cells (VECs) act as barriers to transendothelial cell migration. However, the immune functions of PMNs remain unclear. Tumour cell-released autophagosomes (TRAPs) are critical modulators of antitumour immune responses. Herein, we investigated the mechanism through which TRAPs modulate the immune function of pulmonary VECs in lung PMN in breast cancer.</p><p><strong>Methods: </strong>Immortalised mouse pulmonary microvascular endothelial cells were incubated with TRAPs in vitro. RNA sequencing, flow cytometry, and western blotting were employed to assess immunosuppressive function and mechanism. In vivo, TRAP-trained and autophagy-deficient tumour mice were used to detect immunosuppression, and high-mobility group box 1 (HMGB1)-deficient TRAP-trained and TLR4 knockout mice were utilised to investigate the underlying mechanisms of pulmonary VECs. Additionally, the efficacy of anti-programmed cell death ligand-1 (PD-L1) immunotherapy was evaluated in early tumour-bearing mice.</p><p><strong>Results: </strong>HMGB1 on TRAPs surfaces stimulated VECs to upregulate PD-L1 via a TLR4-MyD88-p38/STAT3 signalling cascade that depended on the cytoskeletal movement of VECs. Importantly, PD-L1 on TRAP-induced VECs can inhibit T cell function, promote lung PMN immunosuppression, and result in more pronounced lung metastasis. Treatment with anti-PD-L1 reduces lung metastasis in early stage tumour-bearing mice.</p><p><strong>Conclusions: </strong>These findings revealed a novel role and mechanism of TRAP-induced immunosuppression of pulmonary VECs in lung PMN. TRAPs and their surface HMGB1 are important therapeutic targets for reversing immunosuppression, providing a new theoretical basis for the treatment of early stage breast cancer using an anti-PD-L1 antibody.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of EREG/ErbB/ERK by Astragaloside IV reversed taxol-resistance of non-small cell lung cancer through attenuation of stemness via TGFβ and Hedgehog signal pathway. 黄芪皂苷IV通过TGFβ和刺猬信号通路抑制EREG/ErbB/ERK,从而逆转了非小细胞肺癌对紫杉醇的耐药性。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-07 DOI: 10.1007/s13402-024-00999-7
Wenhao Xiu, Yujia Zhang, Dongfang Tang, Sau Har Lee, Rui Zeng, Tingjie Ye, Hua Li, Yanlin Lu, Changtai Qin, Yuxi Yang, Xiaofeng Yan, Xiaoling Wang, Xudong Hu, Maoquan Chu, Zhumei Sun, Wei Xu
{"title":"Inhibition of EREG/ErbB/ERK by Astragaloside IV reversed taxol-resistance of non-small cell lung cancer through attenuation of stemness via TGFβ and Hedgehog signal pathway.","authors":"Wenhao Xiu, Yujia Zhang, Dongfang Tang, Sau Har Lee, Rui Zeng, Tingjie Ye, Hua Li, Yanlin Lu, Changtai Qin, Yuxi Yang, Xiaofeng Yan, Xiaoling Wang, Xudong Hu, Maoquan Chu, Zhumei Sun, Wei Xu","doi":"10.1007/s13402-024-00999-7","DOIUrl":"https://doi.org/10.1007/s13402-024-00999-7","url":null,"abstract":"<p><strong>Purpose: </strong>Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug.</p><p><strong>Method: </strong>The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.</p><p><strong>Results: </strong>ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.</p><p><strong>Conclusions: </strong>These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria. 肿瘤免疫监视中的线粒体和针对线粒体的肿瘤疗法。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-07 DOI: 10.1007/s13402-024-01000-1
Lvyuan Li, Yi Zhang, Qiling Tang, Chunyu Wu, Mei Yang, Yan Hu, Zhaojian Gong, Lei Shi, Can Guo, Zhaoyang Zeng, Pan Chen, Wei Xiong
{"title":"Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria.","authors":"Lvyuan Li, Yi Zhang, Qiling Tang, Chunyu Wu, Mei Yang, Yan Hu, Zhaojian Gong, Lei Shi, Can Guo, Zhaoyang Zeng, Pan Chen, Wei Xiong","doi":"10.1007/s13402-024-01000-1","DOIUrl":"https://doi.org/10.1007/s13402-024-01000-1","url":null,"abstract":"<p><p>Mitochondria play a central role in cellular energy production and metabolic regulation, and their function has been identified as a key factor influencing tumor immune responses. This review provides a comprehensive overview of the latest advancements in understanding the role of mitochondria in tumor immune surveillance, covering both innate and adaptive immune responses. Specifically, it outlines how mitochondria influence the function of the tumor immune system, underscoring their crucial role in modulating immune cell behavior to either promote or inhibit tumor development and progression. Additionally, this review highlights emerging drug interventions targeting mitochondria, including novel small molecules with significant potential in cancer therapy. Through an in-depth analysis, it explores how these innovative strategies could improve the efficacy and outlook of tumor treatment.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling therapeutic avenues targeting xCT in head and neck cancer. 揭示针对头颈部癌症 xCT 的治疗途径。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-03 DOI: 10.1007/s13402-024-00997-9
Jaewang Lee, Jong-Lyel Roh
{"title":"Unveiling therapeutic avenues targeting xCT in head and neck cancer.","authors":"Jaewang Lee, Jong-Lyel Roh","doi":"10.1007/s13402-024-00997-9","DOIUrl":"https://doi.org/10.1007/s13402-024-00997-9","url":null,"abstract":"<p><p>Head and neck cancer (HNC) remains a major global health burden, prompting the need for innovative therapeutic strategies. This review examines the role of the cystine/glutamate antiporter (xCT) in HNC, specifically focusing on how xCT contributes to cancer progression through mechanisms such as redox imbalance, ferroptosis, and treatment resistance. The central questions addressed include how xCT dysregulation affects tumor biology and the potential for targeting xCT to enhance treatment outcomes. We explore recent developments in xCT-targeted current and emerging therapies, including xCT inhibitors and novel treatment modalities, and their role in addressing therapeutic challenges. This review aims to provide a comprehensive analysis of xCT as a therapeutic target and to outline future directions for research and clinical application.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IRE1α inhibitor enhances paclitaxel sensitivity of triple-negative breast cancer cells. IRE1α抑制剂可增强三阴性乳腺癌细胞对紫杉醇的敏感性。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-10-01 Epub Date: 2024-06-18 DOI: 10.1007/s13402-024-00961-7
Min Wu, Lin Zhang, Lifu Pi, Layang Liu, Siyu Wang, Yujie Wu, Hongli Pan, Mingyao Liu, Zhengfang Yi
{"title":"IRE1α inhibitor enhances paclitaxel sensitivity of triple-negative breast cancer cells.","authors":"Min Wu, Lin Zhang, Lifu Pi, Layang Liu, Siyu Wang, Yujie Wu, Hongli Pan, Mingyao Liu, Zhengfang Yi","doi":"10.1007/s13402-024-00961-7","DOIUrl":"10.1007/s13402-024-00961-7","url":null,"abstract":"<p><strong>Purpose: </strong>Breast cancer is the most commonly diagnosed cancer in women, and triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of all breast cancers. TNBC is highly invasive and malignant. Due to the lack of relevant receptor markers, the prognosis of TNBC is poor and the five-year survival rate is low. Paclitaxel is the first-line drug for the treatment of TNBC, which can inhibit cell mitosis. However, many patients develop drug resistance during treatment, leading to chemotherapy failure. Therefore, finding new therapeutic combinations to overcome TNBC drug resistance can provide new strategies for improving the survival rate of TNBC patients.</p><p><strong>Methods: </strong>Cell viability assay, RT-qPCR, Colony formation assay, Western blot, and Xenogeneic transplantation methods were used to investigate roles and mechanisms of IRE1α/XBP1s pathway in the paclitaxel-resistant TNBC cells, and combined paclitaxel and IRE1α inhibitor in the treatment of TNBC was examined in vitro and in vivo.</p><p><strong>Results: </strong>We found activation of UPR in paclitaxel-resistant cells, confirming that IRE1α/XBP1 promotes paclitaxel resistance in TNBC. In addition, we demonstrated that the combination of paclitaxel and IRE1α inhibitors can synergistically inhibit the proliferation of TNBC tumors both in vitro and in vivo,suggesting that IRE1α inhibitors combined with paclitaxel may be a new treatment option for TNBC.</p><p><strong>Conclusions: </strong>In this study, we demonstrated the important role of IRE1α signaling in mediating paclitaxel resistance and identified that combination therapies targeting IRE1α signaling could overcome paclitaxel resistance and enhance chemotherapy efficacy.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1797-1809"},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信