S100A9 promotes resistance to anti-PD-1 immunotherapy in hepatocellular carcinoma by degrading PARP1 and activating the STAT3/PD-L1 pathway.

IF 6.6 2区 医学 Q1 Medicine
Xianwei Zhou, Chu Qiao, Xuehui Chu, Yajing Yang, Haoran Man, Jingxin Liu, Yunzheng Li, Zhu Xu, Huan Li, Xiaodong Shan, Zaowu Lian, Yanjun Lu, Weihong Wang, Decai Yu, Xitai Sun, Binghua Li
{"title":"S100A9 promotes resistance to anti-PD-1 immunotherapy in hepatocellular carcinoma by degrading PARP1 and activating the STAT3/PD-L1 pathway.","authors":"Xianwei Zhou, Chu Qiao, Xuehui Chu, Yajing Yang, Haoran Man, Jingxin Liu, Yunzheng Li, Zhu Xu, Huan Li, Xiaodong Shan, Zaowu Lian, Yanjun Lu, Weihong Wang, Decai Yu, Xitai Sun, Binghua Li","doi":"10.1007/s13402-025-01087-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1) immunotherapy, have emerged as promising treatments for advanced hepatocellular carcinoma (HCC), significantly improving clinical outcomes. However, resistance to ICIs remains a major challenge, and the underlying mechanisms of this resistance are not yet fully understood. This study aimed to investigate the role of S100 calcium-binding protein A9 (S100A9) in mediating resistance to anti-PD-1 therapy.</p><p><strong>Approach and results: </strong>We conducted RNA sequencing (RNA-seq) on tumor samples from anti-PD-1 responders and non-responders in HCC patients. Differential expression analysis identified S100A9 as a potential driver gene of resistance to anti-PD-1 therapy. Subcutaneous tumor models and an orthotopic HCC model established via hydrodynamic transfection were utilized to evaluate the impact of S100A9 on the efficacy of PD-1 therapy. Our findings revealed that S100A9 promotes resistance to anti-PD-1 therapy in HCC. Mechanistically, S100A9 directly interacted with PARP1 and induced its degradation via the ubiquitin-proteasome pathway. This process increased STAT3 phosphorylation at Tyr705, thereby enhancing PD-L1 transcription. Notably, treatment with the S100A9 inhibitor Tasquinimod significantly improved the efficacy of anti-PD-1 therapy in HCC.</p><p><strong>Conclusions: </strong>Our study reveals that S100A9 facilitates immune evasion in HCC by enhancing PARP1 ubiquitination, STAT3 phosphorylation, and PD-L1 expression. Furthermore, combining S100A9 inhibitors with anti-PD-1 antibodies markedly enhances the therapeutic efficacy of ICIs in HCC. These findings highlight S100A9 as a potential therapeutic target for overcoming resistance to immunotherapy in HCC.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01087-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1) immunotherapy, have emerged as promising treatments for advanced hepatocellular carcinoma (HCC), significantly improving clinical outcomes. However, resistance to ICIs remains a major challenge, and the underlying mechanisms of this resistance are not yet fully understood. This study aimed to investigate the role of S100 calcium-binding protein A9 (S100A9) in mediating resistance to anti-PD-1 therapy.

Approach and results: We conducted RNA sequencing (RNA-seq) on tumor samples from anti-PD-1 responders and non-responders in HCC patients. Differential expression analysis identified S100A9 as a potential driver gene of resistance to anti-PD-1 therapy. Subcutaneous tumor models and an orthotopic HCC model established via hydrodynamic transfection were utilized to evaluate the impact of S100A9 on the efficacy of PD-1 therapy. Our findings revealed that S100A9 promotes resistance to anti-PD-1 therapy in HCC. Mechanistically, S100A9 directly interacted with PARP1 and induced its degradation via the ubiquitin-proteasome pathway. This process increased STAT3 phosphorylation at Tyr705, thereby enhancing PD-L1 transcription. Notably, treatment with the S100A9 inhibitor Tasquinimod significantly improved the efficacy of anti-PD-1 therapy in HCC.

Conclusions: Our study reveals that S100A9 facilitates immune evasion in HCC by enhancing PARP1 ubiquitination, STAT3 phosphorylation, and PD-L1 expression. Furthermore, combining S100A9 inhibitors with anti-PD-1 antibodies markedly enhances the therapeutic efficacy of ICIs in HCC. These findings highlight S100A9 as a potential therapeutic target for overcoming resistance to immunotherapy in HCC.

S100A9通过降解PARP1和激活STAT3/PD-L1通路,促进肝癌患者对抗pd -1免疫治疗的耐药性。
背景:免疫检查点抑制剂(ICIs),如抗程序性细胞死亡蛋白-1 (PD-1)免疫疗法,已经成为晚期肝细胞癌(HCC)的有希望的治疗方法,显著改善了临床结果。然而,对ICIs的耐药性仍然是一个主要挑战,而且这种耐药性的潜在机制尚未完全了解。本研究旨在探讨S100钙结合蛋白A9 (S100A9)在介导抗pd -1治疗耐药中的作用。方法和结果:我们对HCC患者抗pd -1反应者和无反应者的肿瘤样本进行了RNA测序(RNA-seq)。差异表达分析发现S100A9是抗pd -1治疗耐药的潜在驱动基因。采用皮下肿瘤模型和原位肝癌水动力转染模型评价S100A9对PD-1治疗效果的影响。我们的研究结果显示,S100A9促进肝癌患者对抗pd -1治疗的耐药。机制上,S100A9直接与PARP1相互作用,并通过泛素-蛋白酶体途径诱导其降解。这一过程增加了STAT3 Tyr705位点的磷酸化,从而增强了PD-L1的转录。值得注意的是,使用S100A9抑制剂Tasquinimod治疗可显著提高抗pd -1治疗HCC的疗效。结论:我们的研究表明,S100A9通过增强PARP1泛素化、STAT3磷酸化和PD-L1表达,促进HCC的免疫逃避。此外,S100A9抑制剂与抗pd -1抗体联合使用可显著提高ICIs在HCC中的治疗效果。这些发现强调S100A9是克服HCC免疫治疗耐药的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular Oncology
Cellular Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信