{"title":"微生物群在肺癌中的新作用:肺癌发展和治疗的新视角。","authors":"Chenxi Yan, Yanjie Chen, Yitao Tian, Shaojie Hu, Heng Wang, Xiaoxue Zhang, Qian Chu, Shanshan Huang, Wei Sun","doi":"10.1007/s13402-025-01103-3","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer remains the leading cause of cancer-related mortality worldwide, with limited treatment efficacy and frequent resistance to conventional therapies. Recent advances have uncovered the critical influence of the human microbiota-complex communities of bacteria, viruses, fungi, and other microorganisms-on lung cancer pathogenesis and therapeutic responses. This review synthesizes current knowledge on the compositional and functional roles of microbiota across multiple body sites, including the gut, lung, tumor microenvironment, circulation, and oral cavity, highlighting their contributions to tumor initiation, progression, metastasis, and immune regulation. We emphasize the bidirectional communication between microbial metabolites and host immune pathways, particularly the gut-lung axis, which modulates systemic and local antitumor immunity. Importantly, microbiota composition has been linked to differential responses and toxicities in chemotherapy, radiotherapy, targeted therapy, and immune checkpoint blockade. Microbiota-targeted interventions, such as probiotics, fecal microbiota transplantation, and selective antibiotics, show promising potential to enhance treatment efficacy and mitigate adverse effects. However, challenges remain in clinical translation due to interindividual microbiome variability, mechanistic complexities, and limited longitudinal data. Future research integrating multi-omics, microbial functional profiling, and controlled clinical trials is essential to harness the microbiome as a precision medicine tool in lung cancer management. This review provides a comprehensive overview of the emerging role of microbiota in lung cancer development and therapy, offering new perspectives for innovative therapeutic strategies.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The emerging role of microbiota in lung cancer: a new perspective on lung cancer development and treatment.\",\"authors\":\"Chenxi Yan, Yanjie Chen, Yitao Tian, Shaojie Hu, Heng Wang, Xiaoxue Zhang, Qian Chu, Shanshan Huang, Wei Sun\",\"doi\":\"10.1007/s13402-025-01103-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer remains the leading cause of cancer-related mortality worldwide, with limited treatment efficacy and frequent resistance to conventional therapies. Recent advances have uncovered the critical influence of the human microbiota-complex communities of bacteria, viruses, fungi, and other microorganisms-on lung cancer pathogenesis and therapeutic responses. This review synthesizes current knowledge on the compositional and functional roles of microbiota across multiple body sites, including the gut, lung, tumor microenvironment, circulation, and oral cavity, highlighting their contributions to tumor initiation, progression, metastasis, and immune regulation. We emphasize the bidirectional communication between microbial metabolites and host immune pathways, particularly the gut-lung axis, which modulates systemic and local antitumor immunity. Importantly, microbiota composition has been linked to differential responses and toxicities in chemotherapy, radiotherapy, targeted therapy, and immune checkpoint blockade. Microbiota-targeted interventions, such as probiotics, fecal microbiota transplantation, and selective antibiotics, show promising potential to enhance treatment efficacy and mitigate adverse effects. However, challenges remain in clinical translation due to interindividual microbiome variability, mechanistic complexities, and limited longitudinal data. Future research integrating multi-omics, microbial functional profiling, and controlled clinical trials is essential to harness the microbiome as a precision medicine tool in lung cancer management. This review provides a comprehensive overview of the emerging role of microbiota in lung cancer development and therapy, offering new perspectives for innovative therapeutic strategies.</p>\",\"PeriodicalId\":9690,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-025-01103-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01103-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
The emerging role of microbiota in lung cancer: a new perspective on lung cancer development and treatment.
Lung cancer remains the leading cause of cancer-related mortality worldwide, with limited treatment efficacy and frequent resistance to conventional therapies. Recent advances have uncovered the critical influence of the human microbiota-complex communities of bacteria, viruses, fungi, and other microorganisms-on lung cancer pathogenesis and therapeutic responses. This review synthesizes current knowledge on the compositional and functional roles of microbiota across multiple body sites, including the gut, lung, tumor microenvironment, circulation, and oral cavity, highlighting their contributions to tumor initiation, progression, metastasis, and immune regulation. We emphasize the bidirectional communication between microbial metabolites and host immune pathways, particularly the gut-lung axis, which modulates systemic and local antitumor immunity. Importantly, microbiota composition has been linked to differential responses and toxicities in chemotherapy, radiotherapy, targeted therapy, and immune checkpoint blockade. Microbiota-targeted interventions, such as probiotics, fecal microbiota transplantation, and selective antibiotics, show promising potential to enhance treatment efficacy and mitigate adverse effects. However, challenges remain in clinical translation due to interindividual microbiome variability, mechanistic complexities, and limited longitudinal data. Future research integrating multi-omics, microbial functional profiling, and controlled clinical trials is essential to harness the microbiome as a precision medicine tool in lung cancer management. This review provides a comprehensive overview of the emerging role of microbiota in lung cancer development and therapy, offering new perspectives for innovative therapeutic strategies.
Cellular OncologyBiochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.