Cell Adhesion & Migration最新文献

筛选
英文 中文
N3ICD with the transmembrane domain can effectively inhibit EMT by correcting the position of tight/adherens junctions. 具有跨膜结构域的N3ICD可以通过纠正紧密/粘附连接的位置有效地抑制EMT。
IF 3.2 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 DOI: 10.1080/19336918.2019.1619958
Junyu Tan, Xixun Zhang, Wenjun Xiao, Xiong Liu, Chun Li, Yuxian Guo, Wei Xiong, Yaochen Li
{"title":"N3ICD with the transmembrane domain can effectively inhibit EMT by correcting the position of tight/adherens junctions.","authors":"Junyu Tan,&nbsp;Xixun Zhang,&nbsp;Wenjun Xiao,&nbsp;Xiong Liu,&nbsp;Chun Li,&nbsp;Yuxian Guo,&nbsp;Wei Xiong,&nbsp;Yaochen Li","doi":"10.1080/19336918.2019.1619958","DOIUrl":"https://doi.org/10.1080/19336918.2019.1619958","url":null,"abstract":"<p><p>EMT allows a polarized epithelium to lose epithelial integrity and acquire mesenchymal characteristics. Previously, we found that overexpression of the intracellular domain of Notch3 (N3ICD) can inhibit EMT in breast cancer cells. In this study, we aimed to elucidate the influence of N3ICD or N3ICD combined with the transmembrane domain (TD+N3ICD) on the expression and distribution of TJs/AJs and polar molecules. We found that although N3ICD can upregulate the expression levels of the above-mentioned molecules, TD+N3ICD can inhibit EMT more effectively than N3ICD alone. TD+N3ICD overexpression upregulated the expression of endogenous full-length Notch3 and contributed to correcting the position of TJs/AJs molecules and better acinar structures formation. Co-immunoprecipitation results showed that the upregulated endogenous full-length Notch3 could physically interact with E-ca in MDA-MB-231/pCMV-(TD+N3ICD) cells. Collectively, our data indicate that overexpression of TD+N3ICD can effectively inhibit EMT, resulting in better positioning of TJs/AJs molecules and cell-cell adhesion in breast cancer cells. <b>Abbreviations</b>: EMT: Epithelial-mesenchymal transition; TJs: Tight junctions; AJs: Adherens junctions; aPKC: Atypical protein kinase C; Crb: Crumbs; Lgl: Lethal (2) giant larvae; LLGL2: lethal giant larvae homolog 2; PAR: Partitioning defective; PATJ: Pals1-associated TJ protein.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"203-218"},"PeriodicalIF":3.2,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1619958","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37421597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Gradient fluid shear stress regulates migration of osteoclast precursors. 梯度流体剪切应力调节破骨细胞前体的迁移。
IF 3.2 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 DOI: 10.1080/19336918.2019.1619433
Yan Gao, Taiyang Li, Qing Sun, Bo Huo
{"title":"Gradient fluid shear stress regulates migration of osteoclast precursors.","authors":"Yan Gao,&nbsp;Taiyang Li,&nbsp;Qing Sun,&nbsp;Bo Huo","doi":"10.1080/19336918.2019.1619433","DOIUrl":"https://doi.org/10.1080/19336918.2019.1619433","url":null,"abstract":"<p><p>Cell migration is highly sensitive to fluid shear stress (FSS) in blood flow or interstitial fluid flow. However, whether the FSS gradient can regulate the migration of cells remains unclear. In this work, we constructed a parallel-plate flow chamber with different FSS gradients and verified the gradient flow field by particle image velocimetry measurements and finite element analyses. We then investigated the effect of FSS magnitudes and gradients on the migration of osteoclast precursor RAW264.7 cells. Results showed that the cells sensed the FSS gradient and migrated toward the low-FSS region. This FSS gradient-induced migration tended to occur in low-FSS magnitudes and high gradients, e.g., the migration angle relative to flow direction was approximately 90° for 0.1 Pa FSS and 0.2 Pa mm<sup>-1</sup> FSS gradient. When chemically inhibiting the calcium signaling pathways of the mechanosensitive cation channel, endoplasmic reticulum, phospholipase C, and extracellular calcium, the cell migration toward the low-FSS region was significantly reduced. This study may provide insights into the mechanism of the recruitment of osteoclast precursors at the site of bone resorption and of mechanical stimulation-induced bone remodeling.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"183-191"},"PeriodicalIF":3.2,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1619433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37277687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
A biophysically-defined hyaluronic acid-based compound accelerates migration and stimulates the production of keratinocyte-derived neuromodulators. 一种生物物理定义的透明质酸化合物加速迁移并刺激角化细胞衍生的神经调节剂的产生。
IF 3.2 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 Epub Date: 2018-08-19 DOI: 10.1080/19336918.2018.1494997
Annalisa La Gatta, Antonella D'Agostino, Chiara Schiraldi, Giuseppe Colella, Nicola Cirillo
{"title":"A biophysically-defined hyaluronic acid-based compound accelerates migration and stimulates the production of keratinocyte-derived neuromodulators.","authors":"Annalisa La Gatta,&nbsp;Antonella D'Agostino,&nbsp;Chiara Schiraldi,&nbsp;Giuseppe Colella,&nbsp;Nicola Cirillo","doi":"10.1080/19336918.2018.1494997","DOIUrl":"https://doi.org/10.1080/19336918.2018.1494997","url":null,"abstract":"<p><p>Hyaluronic acid (HA) preparations are widely used in clinical practice and recent data suggest that commercially available HA-based compounds promote ulcer re-epithelialization and induce pain relief. However, the pathophysiological basis of these effects remains poorly understood. In the present study, we investigated the biophysical, biomolecular and functional properties of a HA preparation combined with a pool of collagen precursor synthetic aminoacids, namely l-proline, l-leucine, l-lysine and glycine (Aminogam®). Hydrodynamic characterization of Aminogam® by size exclusion chromatography-triple detector array (SEC-TDA) revealed an average molecular weight in the range of 700-1700 kDa. Rheological measurements of the 1700kDa M<sub>w</sub> lot showed a pseoudoplastic behaviour with a zero-shear viscosity (η<sub>0</sub>) equal to 90 ± 9 Pa∙s at 25°C and 55 ± 6 Pa∙s at 37°C. Automated time-lapse videomicroscopy studies in a fibroblast-free system demonstrated that 1% (v/v) Aminogam® significantly reduced the healing time of wounded keratinocyte monolayers. In AKGOS assays, Aminogam® stimulated cellular locomotion (chemokinesis) and directional migration (chemotaxis) of keratinocytes. Analysis of microarray data suggested that keratinocytes had a functional neuroendocrine machinery, and this was confirmed by testing the secretion of six neuroactive molecules by ELISA, namely α-MSH, β-endorphins, melatonin, substance P, cortisol, and neurotensin. Interestingly, Aminogam® regulated the production of several neuropeptides, including β-endorphins. In conclusion, our data shed light on the epithelial-dependent mechanisms that underlie the efficacy of Aminogam®, particularly in reference to wound healing and nociception.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"23-32"},"PeriodicalIF":3.2,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2018.1494997","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36273752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The role of cellular contact and TGF-beta signaling in the activation of the epithelial mesenchymal transition (EMT). 细胞接触和 TGF-beta 信号在激活上皮间质转化(EMT)中的作用。
IF 3.3 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 Epub Date: 2018-10-08 DOI: 10.1080/19336918.2018.1526597
Kelsey Gasior, Nikki J Wagner, Jhon Cores, Rose Caspar, Alyson Wilson, Sudin Bhattacharya, Marlene L Hauck
{"title":"The role of cellular contact and TGF-beta signaling in the activation of the epithelial mesenchymal transition (EMT).","authors":"Kelsey Gasior, Nikki J Wagner, Jhon Cores, Rose Caspar, Alyson Wilson, Sudin Bhattacharya, Marlene L Hauck","doi":"10.1080/19336918.2018.1526597","DOIUrl":"10.1080/19336918.2018.1526597","url":null,"abstract":"<p><p>The epithelial mesenchymal transition (EMT) is one step in the process through which carcinoma cells metastasize by gaining the cellular mobility associated with mesenchymal cells. This work examines the dual influence of the TGF-β pathway and intercellular contact on the activation of EMT in colon (SW480) and breast (MCF7) carcinoma cells. While the SW480 population revealed an intermediate state between the epithelial and mesenchymal states, the MC7 cells exhibited highly adhesive behavior. However, for both cell lines, an exogenous TGF-β signal and a reduction in cellular confluence can push a subgroup of the population towards the mesenchymal phenotype. Together, these results highlight that, while EMT is induced by the synergy of multiple signals, this activation varies across cell types.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"63-75"},"PeriodicalIF":3.3,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36566546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ARHGEF4-mediates the actin cytoskeleton reorganization of hepatic stellate cells in 3-dimensional collagen matrices. arhgef4介导三维胶原基质中肝星状细胞的肌动蛋白细胞骨架重组。
IF 3.2 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 Epub Date: 2019-03-24 DOI: 10.1080/19336918.2019.1594497
Xiaowei Zhang, Lan Sun, Wei Chen, Shanna Wu, Yanmeng Li, Xiaojin Li, Bei Zhang, Jingyi Yao, Huan Wang, Anjian Xu
{"title":"ARHGEF4-mediates the actin cytoskeleton reorganization of hepatic stellate cells in 3-dimensional collagen matrices.","authors":"Xiaowei Zhang,&nbsp;Lan Sun,&nbsp;Wei Chen,&nbsp;Shanna Wu,&nbsp;Yanmeng Li,&nbsp;Xiaojin Li,&nbsp;Bei Zhang,&nbsp;Jingyi Yao,&nbsp;Huan Wang,&nbsp;Anjian Xu","doi":"10.1080/19336918.2019.1594497","DOIUrl":"https://doi.org/10.1080/19336918.2019.1594497","url":null,"abstract":"<p><p>The actin cytoskeleton of hepatic stellate cells (HSCs) is reorganized when they are cultured in 3D collagen matrices. Here, we investigated the molecular mechanism of actin cytoskeleton reorganization in HSCs cultured in 3D floating collagen matrices (FCM) compared to those on 2D polystyrene surfaces (PS). First, we found that the generation of dendritic cellular processes was controlled by Rac1. Next, we examined the differential gene expression of HSCs cultured on 2D PS and in 3D FCM by RNA-Seq and focused on the changes of actin cytoskeleton reorganization-related molecular components and guanine nucleotide exchange factors (GEFs). The results showed that the expression of genes associated with actin cytoskeleton reorganization-related cellular components, filopodia and lamellipodia, were significantly decreased, but podosome-related genes was significantly increased in 3D FCM. Furthermore, we found that a Rac1-specific GEF, ARHGEF4, played roles in morphological changes, migration and podosome-related gene expression in HSCs cultured in 3D FCM. Abbreviations: 2D PS: 2-dimensional polystyrene surface; 3D FCM: 3-dimensional floating collagen matrices; ARHGEF4: Rho guanine nucleotide exchange factor 4; ARHGEF6: Rho guanine nucleotide exchange factor 6; GEF: guanine nucleotide exchange factor; HSC: hepatic stellate cell.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"169-181"},"PeriodicalIF":3.2,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1594497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37055881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Snail2 induced E-cadherin suppression and metastasis in lung carcinoma facilitated by G9a and HDACs. Snail2诱导G9a和hdac促进肺癌E-cadherin抑制和转移。
IF 3.2 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 DOI: 10.1080/19336918.2019.1638689
Yue Hu, Yayuan Zheng, Mingrui Dai, Jiaxin Wu, Bin Yu, Haihong Zhang, Wei Kong, Hui Wu, Xianghui Yu
{"title":"Snail2 induced E-cadherin suppression and metastasis in lung carcinoma facilitated by G9a and HDACs.","authors":"Yue Hu,&nbsp;Yayuan Zheng,&nbsp;Mingrui Dai,&nbsp;Jiaxin Wu,&nbsp;Bin Yu,&nbsp;Haihong Zhang,&nbsp;Wei Kong,&nbsp;Hui Wu,&nbsp;Xianghui Yu","doi":"10.1080/19336918.2019.1638689","DOIUrl":"https://doi.org/10.1080/19336918.2019.1638689","url":null,"abstract":"<p><p>Snail2 is a repressor of E-cadherin during carcinogenesis; however, the specific mechanisms involved in this process remain largely unknown. Here, we determined that Snail2 was highly increased during TGF-β-induced EMT process in lung cells. H3K9 methylation was up-regulated and H3K4/H3K56 acetylation were down-regulated at the E-cadherin promoter. Snail2 interacted with G9a and HDACs to exert suppression of E-cadherin transcription. Overexpression of Snail2 enhanced the migration and invasion ability, whereas G9a and HDACs inhibition significantly reversed this effect. Our study demonstrated the importance of G9a- and HDACs-mediated regulation during Snail2-induced E-cadherin repression and metastasis during LC progression.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"285-292"},"PeriodicalIF":3.2,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1638689","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37129248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
The Netrin-4/Laminin γ1/Neogenin-1 complex mediates migration in SK-N-SH neuroblastoma cells. Netrin-4/Laminin γ -1 /Neogenin-1复合物介导SK-N-SH神经母细胞瘤细胞的迁移。
IF 3.2 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 Epub Date: 2018-08-30 DOI: 10.1080/19336918.2018.1506652
Andrea A Villanueva, Sofía Puvogel, Pablo Lois, Ernesto Muñoz-Palma, Manuel Ramírez Orellana, Fabiana Lubieniecki, Fernando Casco Claro, Iván Gallegos, Javier García-Castro, Pilar Sanchez-Gomez, Vicente A Torres, Verónica Palma
{"title":"The Netrin-4/Laminin γ1/Neogenin-1 complex mediates migration in SK-N-SH neuroblastoma cells.","authors":"Andrea A Villanueva,&nbsp;Sofía Puvogel,&nbsp;Pablo Lois,&nbsp;Ernesto Muñoz-Palma,&nbsp;Manuel Ramírez Orellana,&nbsp;Fabiana Lubieniecki,&nbsp;Fernando Casco Claro,&nbsp;Iván Gallegos,&nbsp;Javier García-Castro,&nbsp;Pilar Sanchez-Gomez,&nbsp;Vicente A Torres,&nbsp;Verónica Palma","doi":"10.1080/19336918.2018.1506652","DOIUrl":"https://doi.org/10.1080/19336918.2018.1506652","url":null,"abstract":"<p><p>Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. It arises during development of the sympathetic nervous system. Netrin-4 (NTN4), a laminin-related protein, has been proposed as a key factor to target NB metastasis, although there is controversy about its function. Here, we show that NTN4 is broadly expressed in tumor, stroma and blood vessels of NB patient samples. Furthermore, NTN4 was shown to act as a cell adhesion molecule required for the migration induced by Neogenin-1 (NEO1) in SK-N-SH neuroblastoma cells. Therefore, we propose that NTN4, by forming a ternary complex with Laminin γ1 (LMγ1) and NEO1, acts as an essential extracellular matrix component, which induces the migration of SK-N-SH cells.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"33-40"},"PeriodicalIF":3.2,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2018.1506652","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36443601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Hyaluronan-CD44 interactions mediate contractility and migration in periodontal ligament cells. 透明质酸- cd44相互作用介导牙周韧带细胞的收缩和迁移。
IF 3.2 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 Epub Date: 2019-02-08 DOI: 10.1080/19336918.2019.1568140
Zeinab Al-Rekabi, Adriane M Fura, Ilsa Juhlin, Alaa Yassin, Tracy E Popowics, Nathan J Sniadecki
{"title":"Hyaluronan-CD44 interactions mediate contractility and migration in periodontal ligament cells.","authors":"Zeinab Al-Rekabi,&nbsp;Adriane M Fura,&nbsp;Ilsa Juhlin,&nbsp;Alaa Yassin,&nbsp;Tracy E Popowics,&nbsp;Nathan J Sniadecki","doi":"10.1080/19336918.2019.1568140","DOIUrl":"https://doi.org/10.1080/19336918.2019.1568140","url":null,"abstract":"<p><p>The role of hyaluronan (HA) in periodontal healing has been speculated via its interaction with the CD44 receptor. While HA-CD44 interactions have previously been implicated in numerous cell types; effect and mechanism of exogenous HA on periodontal ligament (PDL) cells is less clear. Herein, we examine the effect of exogenous HA on contractility and migration in human and murine PDL cells using arrays of microposts and time-lapse microscopy. Our findings observed HA-treated human PDL cells as more contractile and less migratory than untreated cells. Moreover, the effect of HA on contractility and focal adhesion area was abrogated when PDL cells were treated with Y27632, an inhibitor of rho-dependent kinase, but not when these cells were treated with ML-7, an inhibitor of myosin light chain kinase. Our results provide insight into the mechanobiology of PDL cells, which may contribute towards the development of therapeutic strategies for periodontal healing and tissue regeneration.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"138-150"},"PeriodicalIF":3.2,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1568140","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36881879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
TIMP-2 inhibits metastasis and predicts prognosis of colorectal cancer via regulating MMP-9. TIMP-2通过调控MMP-9抑制结直肠癌转移并预测预后。
IF 3.2 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 DOI: 10.1080/19336918.2019.1639303
Weimin Wang, Dan Li, Liangliang Xiang, Mengying Lv, Li Tao, Tengyang Ni, Jianliang Deng, Xiancheng Gu, Sunagawa Masatara, Yanqing Liu, Yan Zhou
{"title":"TIMP-2 inhibits metastasis and predicts prognosis of colorectal cancer via regulating MMP-9.","authors":"Weimin Wang,&nbsp;Dan Li,&nbsp;Liangliang Xiang,&nbsp;Mengying Lv,&nbsp;Li Tao,&nbsp;Tengyang Ni,&nbsp;Jianliang Deng,&nbsp;Xiancheng Gu,&nbsp;Sunagawa Masatara,&nbsp;Yanqing Liu,&nbsp;Yan Zhou","doi":"10.1080/19336918.2019.1639303","DOIUrl":"https://doi.org/10.1080/19336918.2019.1639303","url":null,"abstract":"<p><p>Colorectal cancer has a common cause of morbidity and mortality. Therefore, it is urgent to detect reliable biomarkers to predict prognosis in CRC. Here, we determined the expression of TIMP-2 and MMP-9 in a  CRC tissue microarray by immunohistochemistry. We found that lower TIMP-2 or/and higher MMP-9 expression in cancer tissues was correlated with poorer overall survival (OS). TIMP-2 or MMP-9 expression was independent prognostic factors for CRC. Furthermore, TIMP-2 and MMP-9 expression had a synergistic role as efficient prognostic indicators for CRC patients. In vitro and in vivo, TIMP-2 could inhibit HCT 116 cells invasion and migration by regulating MMP-9. In sum, a combined expression of TIMP-2 and MMP-9 as efficient prognostic indicators was found for the first time.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"273-284"},"PeriodicalIF":3.2,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1639303","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37134835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Recapitulation of molecular regulators of nuclear motion during cell migration. 细胞迁移过程中核运动的分子调节因子的综述。
IF 3.2 3区 生物学
Cell Adhesion & Migration Pub Date : 2019-12-01 Epub Date: 2018-09-27 DOI: 10.1080/19336918.2018.1506654
Alexandra Sneider, Jungwon Hah, Denis Wirtz, Dong-Hwee Kim
{"title":"Recapitulation of molecular regulators of nuclear motion during cell migration.","authors":"Alexandra Sneider,&nbsp;Jungwon Hah,&nbsp;Denis Wirtz,&nbsp;Dong-Hwee Kim","doi":"10.1080/19336918.2018.1506654","DOIUrl":"10.1080/19336918.2018.1506654","url":null,"abstract":"<p><p>Cell migration is a highly orchestrated cellular event that involves physical interactions of diverse subcellular components. The nucleus as the largest and stiffest organelle in the cell not only maintains genetic functionality, but also actively changes its morphology and translocates through dynamic formation of nucleus-bound contractile stress fibers. Nuclear motion is an active and essential process for successful cell migration and nucleus self-repairs in response to compression and extension forces in complex cell microenvironment. This review recapitulates molecular regulators that are crucial for nuclear motility during cell migration and highlights recent advances in nuclear deformation-mediated rupture and repair processes in a migrating cell.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"50-62"},"PeriodicalIF":3.2,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2018.1506654","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36530139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信