Zhiping Yan, Guanyue Su, Wenbo Gao, Jia He, Yang Shen, Ye Zeng, Xiaoheng Liu
{"title":"流体剪切应力通过激活HepG2细胞的自噬诱导细胞迁移和侵袭。","authors":"Zhiping Yan, Guanyue Su, Wenbo Gao, Jia He, Yang Shen, Ye Zeng, Xiaoheng Liu","doi":"10.1080/19336918.2019.1568141","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC). In the present study, we aimed to study the role of autophagy in HCC cells under FSS. The results showed that FSS upregulated the protein markers of autophagy, induced LC3B aggregation and formation of autophagosomes. Inhibition of integrin by Cliengitide (Cli) or inhibition of the microfilaments formation both inhibited the activation of autophagy in HepG2 under FSS. In addition, Cli inhibited the microfilaments formation and expressions of Rac1 and RhoA in HepG2 cells under FSS. Finally, inhibition of autophagy suppressed the cell migration and invasion in HepG2 under FSS. In conclusion, FSS induced autophagy to promote migration and invasion of HepG2 cells via integrin/cytoskeleton pathways.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"152-163"},"PeriodicalIF":3.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1568141","citationCount":"25","resultStr":"{\"title\":\"Fluid shear stress induces cell migration and invasion via activating autophagy in HepG2 cells.\",\"authors\":\"Zhiping Yan, Guanyue Su, Wenbo Gao, Jia He, Yang Shen, Ye Zeng, Xiaoheng Liu\",\"doi\":\"10.1080/19336918.2019.1568141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC). In the present study, we aimed to study the role of autophagy in HCC cells under FSS. The results showed that FSS upregulated the protein markers of autophagy, induced LC3B aggregation and formation of autophagosomes. Inhibition of integrin by Cliengitide (Cli) or inhibition of the microfilaments formation both inhibited the activation of autophagy in HepG2 under FSS. In addition, Cli inhibited the microfilaments formation and expressions of Rac1 and RhoA in HepG2 cells under FSS. Finally, inhibition of autophagy suppressed the cell migration and invasion in HepG2 under FSS. In conclusion, FSS induced autophagy to promote migration and invasion of HepG2 cells via integrin/cytoskeleton pathways.</p>\",\"PeriodicalId\":9680,\"journal\":{\"name\":\"Cell Adhesion & Migration\",\"volume\":\"13 1\",\"pages\":\"152-163\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336918.2019.1568141\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Adhesion & Migration\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336918.2019.1568141\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2019.1568141","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Fluid shear stress induces cell migration and invasion via activating autophagy in HepG2 cells.
Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC). In the present study, we aimed to study the role of autophagy in HCC cells under FSS. The results showed that FSS upregulated the protein markers of autophagy, induced LC3B aggregation and formation of autophagosomes. Inhibition of integrin by Cliengitide (Cli) or inhibition of the microfilaments formation both inhibited the activation of autophagy in HepG2 under FSS. In addition, Cli inhibited the microfilaments formation and expressions of Rac1 and RhoA in HepG2 cells under FSS. Finally, inhibition of autophagy suppressed the cell migration and invasion in HepG2 under FSS. In conclusion, FSS induced autophagy to promote migration and invasion of HepG2 cells via integrin/cytoskeleton pathways.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.