Burns & Trauma最新文献

筛选
英文 中文
Nocardia rubra cell-wall skeleton mitigates whole abdominal irradiation-induced intestinal injury via regulating macrophage function. 红念珠菌细胞壁骨架通过调节巨噬细胞功能减轻全腹照射引起的肠道损伤
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI: 10.1093/burnst/tkad045
Lingling Wu, Long Chen, Huijuan Li, Yawei Wang, Kexin Xu, Wanchao Chen, Aihua Zhang, Yu Wang, Chunmeng Shi
{"title":"Nocardia rubra cell-wall skeleton mitigates whole abdominal irradiation-induced intestinal injury via regulating macrophage function.","authors":"Lingling Wu, Long Chen, Huijuan Li, Yawei Wang, Kexin Xu, Wanchao Chen, Aihua Zhang, Yu Wang, Chunmeng Shi","doi":"10.1093/burnst/tkad045","DOIUrl":"10.1093/burnst/tkad045","url":null,"abstract":"<p><strong>Background: </strong>Ionizing radiation (IR)-induced intestinal injury is a major side effect and dose-limiting toxicity in patients receiving radiotherapy. There is an urgent need to identify an effective and safe radioprotectant to reduce radiation-induced intestinal injury. Immunoregulation is considered an effective strategy against IR-induced injury. The purpose of this article was to investigate the protective effect of Nocardia rubra cell wall skeleton (Nr-CWS), an immunomodulator, on radiation-induced intestinal damage and to explore its potential mechanism.</p><p><strong>Methods: </strong>C57BL/6 J male mice exposed to 12 Gy whole abdominal irradiation (WAI) were examined for survival rate, morphology and function of the intestine and spleen, as well as the gut microbiota, to comprehensively evaluate the therapeutic effects of Nr-CWS on radiation-induced intestinal and splenetic injury. To further elucidate the underlying mechanisms of Nr-CWS-mediated intestinal protection, macrophages were depleted by clodronate liposomes to determine whether Nr-CWS-induced radioprotection is macrophage dependent, and the function of peritoneal macrophages stimulated by Nr-CWS was detected <i>in vitro</i>.</p><p><strong>Results: </strong>Our data showed that Nr-CWS promoted the recovery of intestinal barrier function, enhanced leucine-rich repeat-containing G protein-coupled receptor 5<sup>+</sup> intestinal stem cell survival and the regeneration of intestinal epithelial cells, maintained intestinal flora homeostasis, protected spleen morphology and function, and improved the outcome of mice exposed to 12 Gy WAI. Mechanistic studies indicated that Nr-CWS recruited macrophages to reduce WAI-induced intestinal damage. Moreover, macrophage depletion by clodronate liposomes blocked Nr-CWS-induced radioprotection. <i>In vitro</i>, we found that Nr-CWS activated the nuclear factor kappa-B signaling pathway and promoted the phagocytosis and migration ability of peritoneal macrophages.</p><p><strong>Conclusions: </strong>Our study suggests the therapeutic effect of Nr-CWS on radiation-induced intestinal injury, and provides possible therapeutic strategy and potential preventive and therapeutic drugs to alleviate it.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkad045"},"PeriodicalIF":5.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminol-conjugated cyclodextrin biological nanoparticles for the treatment of severe burn-induced intestinal barrier disruption. 用于治疗严重烧伤引起的肠屏障破坏的鲁米诺共轭环糊精生物纳米粒子。
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-03-03 eCollection Date: 2024-01-01 DOI: 10.1093/burnst/tkad054
Yajun Song, Yang Li, Wengang Hu, Feng Li, Hao Sheng, Chibing Huang, Xin Gou, Jingming Hou, Ji Zheng, Ya Xiao
{"title":"Luminol-conjugated cyclodextrin biological nanoparticles for the treatment of severe burn-induced intestinal barrier disruption.","authors":"Yajun Song, Yang Li, Wengang Hu, Feng Li, Hao Sheng, Chibing Huang, Xin Gou, Jingming Hou, Ji Zheng, Ya Xiao","doi":"10.1093/burnst/tkad054","DOIUrl":"10.1093/burnst/tkad054","url":null,"abstract":"<p><strong>Background: </strong>The breakdown of intestinal barrier integrity occurs after severe burn injury and is responsible for the subsequent reactions of inflammation and oxidative stress. A new protective strategy for the intestinal barrier is urgently needed due to the limitations of the traditional methods. Recently, the application of nanoparticles has become one of the promising therapies for many inflammation-related diseases or oxidative damage. Herein, we developed a new anti-inflammatory and antioxidant nanoparticle named luminol-conjugated cyclodextrin (LCD) and aimed to evaluate its protective effects in severe burn-induced intestinal injury.</p><p><strong>Methods: </strong>First, LCD nanoparticles, engineered with covalent conjugation between luminol and β-cyclodextrin (β-CD), were synthesized and examined. Then a mouse burn model was successfully established before the mouse body weight, intestinal histopathological manifestation, permeability, tight junction (TJ) expression and pro-inflammatory cytokines were determined in different groups. The proliferation, apoptosis, migration and reactive oxygen species (ROS) of intestinal epithelial cells (IECs) were assessed. Intraepithelial lymphocytes (IELs) were isolated and cultured for analysis by flow cytometry.</p><p><strong>Results: </strong>LCD nanoparticle treatment significantly relieved the symptoms of burn-induced intestinal injury in the mouse model, including body weight loss and intestinal permeability abnormalities. Moreover, LCD nanoparticles remarkably recovered the mechanical barrier of the intestine after severe burn, renewed TJ structures, promoted IEC proliferation and migration, and inhibited IEC apoptosis. Mechanistically, LCD nanoparticles dramatically alleviated pro-inflammation factors (tumor necrosis factor-α, IL-17A) and ROS accumulation, which could be highly involved in intestinal barrier disruption. Furthermore, an increase in IL-17A and the proportion of IL-17A<sup>+</sup>Vγ4<sup>+</sup> γδ T subtype cells was also observed <i>in vitro</i> in LPS-treated Vγ4<sup>+</sup> γδ T cells, but the use of LCD nanoparticles suppressed this increase.</p><p><strong>Conclusions: </strong>Taken together, these findings demonstrate that LCD nanoparticles have the protective ability to ameliorate intestinal barrier disruption and provide a therapeutic intervention for burn-induced intestinal injury.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkad054"},"PeriodicalIF":5.3,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose mesenchymal stem cell-derived exosomes promote skin wound healing in diabetic mice by regulating epidermal autophagy 源自脂肪间充质干细胞的外泌体通过调节表皮自噬促进糖尿病小鼠皮肤伤口愈合
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-03-01 DOI: 10.1093/burnst/tkae001
Zhe Wang, Haiyue Ren, Peng Su, Feng Zhao, Qiqi Zhang, Xing Huang, Cai He, Quan Wu, Zitong Wang, Jiajie Ma
{"title":"Adipose mesenchymal stem cell-derived exosomes promote skin wound healing in diabetic mice by regulating epidermal autophagy","authors":"Zhe Wang, Haiyue Ren, Peng Su, Feng Zhao, Qiqi Zhang, Xing Huang, Cai He, Quan Wu, Zitong Wang, Jiajie Ma","doi":"10.1093/burnst/tkae001","DOIUrl":"https://doi.org/10.1093/burnst/tkae001","url":null,"abstract":"Background Adipose mesenchymal stem cell-derived exosomes (ADSC-Exos) have great potential in the field of tissue repair and regenerative medicine, particularly in cases of refractory diabetic wounds. Interestingly, autophagy plays a role in wound healing, and recent research has demonstrated that exosomes are closely associated with intracellular autophagy in biogenesis and molecular signaling mechanisms. Therefore, this study aimed to investigate whether ADSC-Exos promote the repair of diabetic wounds by regulating autophagy to provide a new method and theoretical basis for the treatment of diabetic wounds. Methods Western blot analysis and autophagy double-labelled adenovirus were used to monitor changes in autophagy flow in human immortalized keratinocyte cell line (HaCaT) cells. ADSC-Exos were generated from ADSC supernatants via ultracentrifugation. The effectiveness of ADSC-Exos on HaCaT cells was assessed using a live-cell imaging system, cell counting kit-8 and cell scratch assays. The cells were treated with the autophagy inhibitor bafilomycin A1 to evaluate the effects of autophagy on cell function. The recovery of diabetic wounds after ADSC-Exo treatment was determined by calculating the healing rates and performing histological analysis. High-throughput transcriptome sequencing was used to analyze changes in mRNA expression after the treatment of HaCaT cells with ADSC-Exos. Results ADSC-Exos activated autophagy in HaCaT cells, which was inhibited by high glucose levels, and potentiated their cellular functions. Moreover, ADSC-Exos in combination with the autophagy inhibitor bafilomycin A1 showed that autophagy defects further impaired the biological function of epidermal cells under high-glucose conditions and partially weakened the healing effect of ADSC-Exos. Using a diabetes wound model, we found that ADSC-Exos promoted skin wound healing in diabetic mice, as evidenced by increased epidermal autophagy and rapid re-epithelialization. Finally, sequencing results showed that increased expression of autophagy-related genes nicotinamide phosphoribosyltransferase (NAMPT), CD46, vesicle-associated membrane protein 7 (VAMP7), VAMP3 and eukaryotic translation initiation factor 2 subunit alpha (EIF2S1) may contribute to the underlying mechanism of ADSC-Exo action. Conclusions This study elucidated the molecular mechanism through which ADCS-Exos regulate autophagy in skin epithelial cells, thereby providing a new theoretical basis for the treatment and repair of skin epithelial damage by ADSC-Exos.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"6 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia macrophage-derived exosomal miR-26b-5p targeting PTEN promotes the development of keloids. 缺氧巨噬细胞源性外泌体miR-26b-5p靶向PTEN促进瘢痕疙瘩的发展。
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-02-29 eCollection Date: 2024-01-01 DOI: 10.1093/burnst/tkad036
Siya Dai, Mingyuan Xu, Qianqian Pang, Jiaqi Sun, Xiaohu Lin, Xi Chu, Chunyi Guo, Jinghong Xu
{"title":"Hypoxia macrophage-derived exosomal miR-26b-5p targeting PTEN promotes the development of keloids.","authors":"Siya Dai, Mingyuan Xu, Qianqian Pang, Jiaqi Sun, Xiaohu Lin, Xi Chu, Chunyi Guo, Jinghong Xu","doi":"10.1093/burnst/tkad036","DOIUrl":"10.1093/burnst/tkad036","url":null,"abstract":"<p><strong>Background: </strong>Hypoxia is the typical characteristic of keloids. The development of keloids is closely related to the abnormal phenotypic transition of macrophages. However, the role of exosomal microRNAs (miRNAs) derived from hypoxic macrophages in keloids remains unclear. This study aimed to explore the role of hypoxic macrophage-derived exosomes (HMDE) in the occurrence and development of keloids and identify the critical miRNA.</p><p><strong>Methods: </strong>The expression of CD206<sup>+</sup> M2 macrophage in keloids and normal skin tissues was examined through immunofluorescence. The polarization of macrophages under a hypoxia environment was detected through flow cytometry. The internalization of macrophage-derived exosomes in human keloid fibroblasts (HKFs) was detected using a confocal microscope. miRNA sequencing was used to explore the differentially expressed miRNAs in exosomes derived from the normoxic and hypoxic macrophage. Subsequently, the dual-luciferase reporter assay verified that phosphatase and tension homolog (PTEN) was miR-26b-5p's target. The biological function of macrophage-derived exosomes, miR-26b-5p and PTEN were detected using the CCK-8, wound-healing and Transwell assays. Western blot assay was used to confirm the miR-26b-5p's underlying mechanisms and PTEN-PI3K/AKT pathway.</p><p><strong>Results: </strong>We demonstrated that M2-type macrophages were enriched in keloids and that hypoxia treatment could polarize macrophages toward M2-type. Compared with normoxic macrophages-derived exosomes (NMDE), HMDE promote the proliferation, migration and invasion of HKFs. A total of 38 differential miRNAs (18 upregulated and 20 downregulated) were found between the NMDE and HMDE. miR-26b-5p was enriched in HMDE, which could be transmitted to HKFs. According to the results of the functional assay, exosomal miR-26b-5p produced by macrophages facilitated HKFs' migration, invasion and proliferation via the PTEN-PI3K/AKT pathway.</p><p><strong>Conclusions: </strong>The highly expressed miR-26b-5p in HMDE promotes the development of keloids via the PTEN-PI3K/AKT pathway.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkad036"},"PeriodicalIF":5.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix metalloproteinase-8 regulates dendritic cell tolerance in late polymicrobial sepsis via the nuclear factor kappa-B p65/β-catenin pathway. 基质金属蛋白酶-8通过核因子卡巴-B p65/β-catenin通路调节多微生物败血症晚期树突状细胞耐受性
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-02-28 eCollection Date: 2024-01-01 DOI: 10.1093/burnst/tkad025
Zhong-Qiu Lu, Chen Zhang, Lin-Jun Zhao, Wei Dong, Liang Lv, Yang Lu, Xiao-Yan Chen, Jie Zhang, Xin-Yong Liu, Zhong Xiao, Long-Wang Chen, Yong-Ming Yao, Guang-Ju Zhao
{"title":"Matrix metalloproteinase-8 regulates dendritic cell tolerance in late polymicrobial sepsis via the nuclear factor kappa-B p65/β-catenin pathway.","authors":"Zhong-Qiu Lu, Chen Zhang, Lin-Jun Zhao, Wei Dong, Liang Lv, Yang Lu, Xiao-Yan Chen, Jie Zhang, Xin-Yong Liu, Zhong Xiao, Long-Wang Chen, Yong-Ming Yao, Guang-Ju Zhao","doi":"10.1093/burnst/tkad025","DOIUrl":"10.1093/burnst/tkad025","url":null,"abstract":"<p><strong>Background: </strong>Tolerogenic dendritic cells (DCs) are associated with poor prognosis of sepsis. Matrix metalloproteinases (MMPs) have been shown to have immunomodulatory effects. However, whether MMPs are involved in the functional reprogramming of DCs is unknown. The study aims to investigate the role of MMPs in sepsis-induced DCs tolerance and the potential mechanisms.</p><p><strong>Methods: </strong>A murine model of late sepsis was induced by cecal ligation and puncture (CLP). The expression levels of members of the MMP family were detected in sepsis-induced tolerogenic DCs by using microarray assessment. The potential roles and mechanisms underlying MMP8 in the differentiation, maturation and functional reprogramming of DCs during late sepsis were assessed both <i>in vitro</i> and <i>in vivo</i>.</p><p><strong>Results: </strong>DCs from late septic mice expressed higher levels of MMP8, MMP9, MMP14, MMP19, MMP25 and MMP27, and MMP8 levels were the highest. MMP8 deficiency significantly alleviated sepsis-induced immune tolerance of DCs both <i>in vivo</i> and <i>in vitro</i>. Adoptive transfer of MMP8 knockdown post-septic bone marrow-derived DCs protected mice against sepsis-associated lethality and organ dysfunction, inhibited regulatory T-cell expansion and enhanced Th1 response. Furthermore, the effect of MMP8 on DC tolerance was found to be associated with the nuclear factor kappa-B p65/β-catenin pathway.</p><p><strong>Conclusions: </strong>Increased MMP8 levels in septic DCs might serve as a negative feedback loop, thereby suppressing the proinflammatory response and inducing DC tolerance.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkad025"},"PeriodicalIF":5.3,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surgical management for massive rotator cuff tears: a network meta-analysis of randomized controlled trials. 大面积肩袖撕裂的手术治疗:随机对照试验的网络荟萃分析。
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-02-09 eCollection Date: 2024-01-01 DOI: 10.1093/burnst/tkad052
Hongfu Jin, Zhenhan Deng, Jianfeng Sun, Djandan Tadum Arthur Vithran, Wenfeng Xiao, Yusheng Li
{"title":"Surgical management for massive rotator cuff tears: a network meta-analysis of randomized controlled trials.","authors":"Hongfu Jin, Zhenhan Deng, Jianfeng Sun, Djandan Tadum Arthur Vithran, Wenfeng Xiao, Yusheng Li","doi":"10.1093/burnst/tkad052","DOIUrl":"https://doi.org/10.1093/burnst/tkad052","url":null,"abstract":"<p><strong>Background: </strong>Multiple surgical strategies have been developed for treating massive rotator cuff tears (mRCTs). However, there is still no consensus on the best surgical option for mRCTs. Through a network meta-analysis, we aimed to comprehensively and systematically analyse the evidence in randomized controlled trials to help clinicians make evidence-based clinical decisions for patients with mRCTs.</p><p><strong>Methods: </strong>Our study was a network meta-analysis of the surgical management of mRCTs (PROSPERO Registration ID: CRD42023397971). We searched PubMed, EMBASE, Cochrane and Web of Science for randomized controlled trials that examined the efficacy of surgical management for mRCTs up to 3 November 2022. A three-step method was employed for the study process. Study selection, data extraction and risk of bias evaluation were conducted by two independent reviewers. R software (version 4.2.1) and Stata (version 15.1) were used for the data analysis.</p><p><strong>Results: </strong>From 10,633 publications, we included 15 randomized controlled trials (996 participants) for the quantitative analysis. In terms of both long-term and short-term surgical effects, there were no statistically significant differences among surgical interventions such as patch-augmented rotator cuff repair (RCR), RCR with platelet-rich plasma, arthroscopic decompression, bridging reconstruction, arthroscopic RCR with platelet-leukocyte membrane, open RCR, mini-open RCR, arthroscopic debridement, superior capsular reconstruction, arthroscopic suture-spanning augmented repair, subacromial balloon spacer and latissimus dorsi tendon transfer. Based on algorithms, the probability ranking suggests that patch augmentation is the most highly ranked surgical intervention for achieving better short-term surgical outcomes. Furthermore, arthroscopic-associated mini-open RCR was ranked as the highest surgical intervention for achieving better long-term surgical effects.</p><p><strong>Conclusions: </strong>Based on the available data from the included studies, similar surgical efficacies were observed among the reported intervention measures for mRCTs. The patch augmentation technique was found to potentially achieve better short-term surgical outcomes, which is consistent with previous reports. However, the best surgical interventions for achieving long-term surgical effects remain unknown. More high-quality research is needed to evaluate the efficacy and safety of these interventions and to guide clinical practice.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkad052"},"PeriodicalIF":5.3,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activating autophagy promotes skin regeneration induced by mechanical stretch during tissue expansion. 在组织扩张过程中,激活自噬可促进机械拉伸诱导的皮肤再生。
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-02-07 eCollection Date: 2024-01-01 DOI: 10.1093/burnst/tkad057
Jing Du, Wei Liu, Yajuan Song, Yu Zhang, Chen Dong, Shaoheng Xiong, Zhaosong Huang, Tong Wang, Jianke Ding, Qiang He, Zhou Yu, Xianjie Ma
{"title":"Activating autophagy promotes skin regeneration induced by mechanical stretch during tissue expansion.","authors":"Jing Du, Wei Liu, Yajuan Song, Yu Zhang, Chen Dong, Shaoheng Xiong, Zhaosong Huang, Tong Wang, Jianke Ding, Qiang He, Zhou Yu, Xianjie Ma","doi":"10.1093/burnst/tkad057","DOIUrl":"10.1093/burnst/tkad057","url":null,"abstract":"<p><strong>Background: </strong>Tissue expansion, a technique in which skin regeneration is induced by mechanical stretch stimuli, is commonly used for tissue repair and reconstruction. In this study, we aimed to monitor the autophagy levels of expanded skin after the application of expansion stimuli and explore the effect of autophagy modulation on skin regeneration.</p><p><strong>Methods: </strong>A rat scalp expansion model was established to provide a stable expanded skin response to mechanical stretch. Autophagy levels at different time points (6, 12, 24, 48 and 72 h after the last expansion) were detected via western blotting. The effect of autophagy regulation on skin regeneration during tissue expansion was evaluated via skin expansion efficiency assessment, western blotting, immunofluorescence staining, TUNEL staining and laser Doppler blood flow imaging.</p><p><strong>Results: </strong>The autophagic flux reached its highest level 48 h after tissue expansion. Activating autophagy by rapamycin increased the area of expanded skin as well as the thicknesses of epidermis and dermis. Furthermore, activating autophagy accelerated skin regeneration during tissue expansion by enhancing the proliferation of cells and the number of epidermal basal and hair follicle stem cells, reducing apoptosis, improving angiogenesis, and promoting collagen synthesis and growth factor secretion. Conversely, the regenerative effects were reversed when autophagy was blocked.</p><p><strong>Conclusions: </strong>Autophagy modulation may be a promising therapeutic strategy for improving the efficiency of tissue expansion and preventing the incidence of the complication of skin necrosis.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkad057"},"PeriodicalIF":5.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139701968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of scar age, laser type and laser treatment intervals on paediatric burn scars: a systematic review and meta-analysis 疤痕年龄、激光类型和激光治疗间隔对儿科烧伤疤痕的影响:系统回顾和荟萃分析
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-02-03 DOI: 10.1093/burnst/tkad046
Yangmyung Ma, Sabrina P Barnes, Yung-Yi Chen, Naiem Moiemen, Janet M Lord, Amanda V Sardeli
{"title":"Influence of scar age, laser type and laser treatment intervals on paediatric burn scars: a systematic review and meta-analysis","authors":"Yangmyung Ma, Sabrina P Barnes, Yung-Yi Chen, Naiem Moiemen, Janet M Lord, Amanda V Sardeli","doi":"10.1093/burnst/tkad046","DOIUrl":"https://doi.org/10.1093/burnst/tkad046","url":null,"abstract":"Background Laser therapy has emerged to play a valuable role in the treatment of paediatric burn scars; however, there is heterogeneity in the literature, particularly concerning optimal timing for initiation of laser therapy. This study aims to investigate the effect of factors such as scar age, type of laser and laser treatment interval on burn scar outcomes in children by meta-analysis of previous studies. Methods A literature search was conducted across seven databases in May 2022 to understand the effects of laser therapy on burn scar outcomes in paediatric patients by metanalysis of standardized mean difference (SMD) between pre- and post-laser intervention. Meta-analyses were performed using the Comprehensive Meta-Analysis software version 4.0. Fixed models were selected when there was no significant heterogeneity, and the random effects model was selected for analysis when significant heterogeneity was identified. For all analyses, a p-value &amp;lt; 0.05 was considered significant. Results Seven studies were included in the meta-analysis with a total of 467 patients. Laser therapy significantly improved Vancouver Scar Scale (VSS)/Total Patient and Observer Scar Assessment Scale (Total POSAS), vascularity, pliability, pigmentation and scar height of burn scars. Significant heterogeneity was found between the studies and thus subgroup analyses were performed. Early laser therapy (&amp;lt;12 months post-injury) significantly improved VSS/POSAS scores compared to latent therapy (&amp;gt;12 months post-injury) {SMD −1.97 [95% confidence interval (CI) = −3.08; −0.87], p &amp;lt; 0.001 vs −0.59 [95%CI = −1.10; −0.07], p = 0.03} as well as vascularity {SMD −3.95 [95%CI = −4.38; −3.53], p &amp;lt; 0.001 vs −0.48 [95%CI = −0.66; −0.30], p &amp;lt; 0.001}. Non-ablative laser was most effective, significantly reducing VSS/POSAS, vascularity, pliability and scar height outcomes compared to ablative, pulse dye laser and a combination of ablative and pulse dye laser. Shorter treatment intervals of &amp;lt;4 weeks significantly reduced VSS/POSAS and scar height outcomes compared to intervals of 4 to 6 weeks. Conclusions Efficacy of laser therapy in the paediatric population is influenced by scar age, type of laser and interval between laser therapy application. The result of this study particularly challenges the currently accepted initiation time for laser treatment. Significant heterogeneity was observed within the studies, which suggests the need to explore other confounding factors influencing burn scar outcomes after laser therapy.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"77 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cGAS-STING pathway: a therapeutic target in diabetes and its complications cGAS-STING 通路:糖尿病及其并发症的治疗靶点
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-02-03 DOI: 10.1093/burnst/tkad050
Wenjie He, Xingrui Mu, Xingqian Wu, Ye Liu, Junyu Deng, Yiqiu Liu, Felicity Han, Xuqiang Nie
{"title":"The cGAS-STING pathway: a therapeutic target in diabetes and its complications","authors":"Wenjie He, Xingrui Mu, Xingqian Wu, Ye Liu, Junyu Deng, Yiqiu Liu, Felicity Han, Xuqiang Nie","doi":"10.1093/burnst/tkad050","DOIUrl":"https://doi.org/10.1093/burnst/tkad050","url":null,"abstract":"Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"70 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of burn injury on the central nervous system 烧伤对中枢神经系统的影响
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-02-02 DOI: 10.1093/burnst/tkad037
Amira Allahham, Grant Rowe, Andrew Stevenson, Mark W Fear, Ann-Maree Vallence, Fiona M Wood
{"title":"The impact of burn injury on the central nervous system","authors":"Amira Allahham, Grant Rowe, Andrew Stevenson, Mark W Fear, Ann-Maree Vallence, Fiona M Wood","doi":"10.1093/burnst/tkad037","DOIUrl":"https://doi.org/10.1093/burnst/tkad037","url":null,"abstract":"Burn injuries can be devastating, with life-long impacts including an increased risk of hospitalization for a wide range of secondary morbidities. One area that remains not fully understood is the impact of burn trauma on the central nervous system (CNS). This review will outline the current findings on the physiological impact that burns have on the CNS and how this may contribute to the development of neural comorbidities including mental health conditions. This review highlights the damaging effects caused by burn injuries on the CNS, characterized by changes to metabolism, molecular damage to cells and their organelles, and disturbance to sensory, motor and cognitive functions in the CNS. This damage is likely initiated by the inflammatory response that accompanies burn injury, and it is often long-lasting. Treatments used to relieve the symptoms of damage to the CNS due to burn injury often target inflammatory pathways. However, there are non-invasive treatments for burn patients that target the functional and cognitive damage caused by the burn, including transcranial magnetic stimulation and virtual reality. Future research should focus on understanding the mechanisms that underpin the impact of a burn injury on the CNS, burn severity thresholds required to inflict damage to the CNS, and acute and long-term therapies to ameliorate deleterious CNS changes after a burn.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"1 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信