Burns & Trauma最新文献

筛选
英文 中文
Consensus on the treatment of second-degree burn wounds (2024 edition). 二度烧伤治疗共识(2024 年版)。
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-01-30 eCollection Date: 2024-01-01 DOI: 10.1093/burnst/tkad061
Shizhao Ji, Shichu Xiao, Zhaofan Xia
{"title":"Consensus on the treatment of second-degree burn wounds (2024 edition).","authors":"Shizhao Ji, Shichu Xiao, Zhaofan Xia","doi":"10.1093/burnst/tkad061","DOIUrl":"10.1093/burnst/tkad061","url":null,"abstract":"<p><p>Second-degree burns are the most common type of burn in clinical practice and hard to manage. Their treatment requires not only a consideration of the different outcomes that may arise from the dressing changes or surgical therapies themselves but also an evaluation of factors such as the burn site, patient age and burn area. Meanwhile, special attention should be given to the fact that there is no unified standard or specification for the diagnosis, classification, surgical procedure, and infection diagnosis and grading of second-degree burn wounds. This not only poses great challenges to the formulation of clinical treatment plans but also significantly affects the consistency of clinical studies. Moreover, currently, there are relatively few guidelines or expert consensus for the management of second-degree burn wounds, and no comprehensive and systematic guidelines or specifications for the treatment of second-degree burns have been formed. Therefore, we developed the Consensus on the Treatment of Second-Degree Burn Wounds (2024 edition), based on evidence-based medicine and expert opinion. This consensus provides specific recommendations on prehospital first aid, nonsurgical treatment, surgical treatment and infection treatment for second-degree burns. The current consensus generated a total of 58 recommendations, aiming to form a standardized clinical treatment plan.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkad061"},"PeriodicalIF":5.3,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadening horizons: ferroptosis as a new target for traumatic brain injury 拓宽视野:作为脑外伤治疗新靶点的铁蛋白沉积症
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-01-21 DOI: 10.1093/burnst/tkad051
Ziqing Wei, Haihan Yu, Huijuan Zhao, Mingze Wei, Han Xing, Jinyan Pei, Yang Yang, Kaidi Ren
{"title":"Broadening horizons: ferroptosis as a new target for traumatic brain injury","authors":"Ziqing Wei, Haihan Yu, Huijuan Zhao, Mingze Wei, Han Xing, Jinyan Pei, Yang Yang, Kaidi Ren","doi":"10.1093/burnst/tkad051","DOIUrl":"https://doi.org/10.1093/burnst/tkad051","url":null,"abstract":"Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc−/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"7 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomal miR-4645-5p from hypoxic bone marrow mesenchymal stem cells facilitates diabetic wound healing by restoring keratinocyte autophagy 缺氧骨髓间充质干细胞的外泌体 miR-4645-5p 通过恢复角质形成细胞的自噬作用促进糖尿病伤口愈合
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-01-19 DOI: 10.1093/burnst/tkad058
Yan Shi, Shang Wang, Dewu Liu, Zhengguang Wang, Yihan Zhu, Jun Li, Kui Xu, Furong Li, Huicai Wen, Ronghua Yang
{"title":"Exosomal miR-4645-5p from hypoxic bone marrow mesenchymal stem cells facilitates diabetic wound healing by restoring keratinocyte autophagy","authors":"Yan Shi, Shang Wang, Dewu Liu, Zhengguang Wang, Yihan Zhu, Jun Li, Kui Xu, Furong Li, Huicai Wen, Ronghua Yang","doi":"10.1093/burnst/tkad058","DOIUrl":"https://doi.org/10.1093/burnst/tkad058","url":null,"abstract":"Background Refractory diabetic wounds are a common occurrence in patients with diabetes and epidermis-specific macroautophagy/autophagy impairment has been implicated in their pathogenesis. Therefore, identifying and developing treatment strategies capable of normalizing epidermis-specific macroautophagy/autophagy could facilitate diabetic wound healing. The study aims to investigate the potential of bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) from hypoxic conditions as a treatment to normalize epidermis-specific autophagy for diabetic wound healing. Methods We compared the effects of bone marrow mesenchymal stem cell (BMSC)-sourced exosomes (BMSC-Exos) from hypoxic conditions to those of BMSC in normoxic conditions (noBMSC-Exos). Our studies involved morphometric assessment of the exosomes, identification of the microRNA (miRNA) responsible for the effects, evaluation of keratinocyte functions and examination of effects of the exosomes on several molecules involved in the autophagy pathway such as microtubule-associated protein 1 light chain 3 beta, beclin 1, sequestosome 1, autophagy-related 5 and autophagy-related 5. The experiments used human BMSCs from the American Type Culture Collection, an in vivo mouse model of diabetes (db/db) to assess wound healing, as well as the human keratinocyte HaCaT cell line. In the methodology, the authors utilized an array of approaches that included electron microscopy, small interfering RNA (siRNA) studies, RNA in situ hybridization, quantitative real-time reverse transcription PCR (qRT-PCR), the isolation, sequencing and differential expression of miRNAs, as well as the use of miR-4645-5p-specific knockdown with an inhibitor. Results Hypoxia affected the release of exosomes from hypoxic BMSCs (hy-BMSCs) and influenced the size and morphology of the exosomes. Moreover, hyBMSC-Exo treatment markedly improved keratinocyte function, including keratinocyte autophagy, proliferation and migration. miRNA microarray and bioinformatics analysis showed that the target genes of the differentially expressed miRNAs were mainly enriched in ‘autophagy’ and ‘process utilizing autophagic mechanism’ in the ‘biological process’ category and miR-4645-5p as a major contributor to the pro-autophagy effect of hyBMSC-Exos. Moreover, mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) was identified as a potential target of exosomal miR-4645-5p; this was confirmed using a dual luciferase assay. Exosomal miR-4645-5p mediates the inactivation of the MAPKAPK2-induced AKT kinase group (comprising AKT1, AKT2, and AKT3), which in turn suppresses AKT-mTORC1 signaling, thereby facilitating miR-4645-5p-mediated autophagy. Conclusions Overall, the results of this study showed that hyBMSC-Exo-mediated transfer of miR-4645-5p inactivated MAPKAPK2-induced AKT-mTORC1 signaling in keratinocytes, which activated keratinocyte autophagy, proliferation and migration, resulting in diabetic wound healing in mice. C","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of phosphatidylinositol 3-kinase catalytic subunit alpha by miR-203a-3p reduces hypertrophic scar formation via phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway. 通过 miR-203a-3p 抑制磷脂酰肌醇 3- 激酶催化亚基α,可减少通过磷脂酰肌醇 3- 激酶/AKT/mTOR 信号通路形成的肥厚性瘢痕。
IF 6.3 1区 医学
Burns & Trauma Pub Date : 2024-01-02 eCollection Date: 2024-01-01 DOI: 10.1093/burnst/tkad048
Shixin Zhao, Hengdeng Liu, Hanwen Wang, Xuefeng He, Jinming Tang, Shaohai Qi, Ronghua Yang, Julin Xie
{"title":"Inhibition of phosphatidylinositol 3-kinase catalytic subunit alpha by miR-203a-3p reduces hypertrophic scar formation via phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway.","authors":"Shixin Zhao, Hengdeng Liu, Hanwen Wang, Xuefeng He, Jinming Tang, Shaohai Qi, Ronghua Yang, Julin Xie","doi":"10.1093/burnst/tkad048","DOIUrl":"10.1093/burnst/tkad048","url":null,"abstract":"<p><strong>Background: </strong>Hypertrophic scar (HS) is a common fibroproliferative skin disease that currently has no truly effective therapy. Given the importance of phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in hypertrophic scar formation, the development of therapeutic strategies for endogenous inhibitors against PIK3CA is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of miR-203a-3p (PIK3CA inhibitor) against excessive scar.</p><p><strong>Methods: </strong>Bioinformatic analysis, immunohistochemistry, immunofluorescence, miRNA screening and fluorescence <i>in situ</i> hybridization assays were used to identify the possible pathways and target molecules mediating HS formation. A series of <i>in vitro</i> and <i>in vivo</i> experiments were used to clarify the role of PIK3CA and miR-203a-3p in HS. Mechanistically, transcriptomic sequencing, immunoblotting, dual-luciferase assay and rescue experiments were executed.</p><p><strong>Results: </strong>Herein, we found that PIK3CA and the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway were upregulated in scar tissues and positively correlated with fibrosis. We then identified miR-203a-3p as the most suitable endogenous inhibitor of PIK3CA. miR-203a-3p suppressed the proliferation, migration, collagen synthesis and contractility as well as the transdifferentiation of fibroblasts into myofibroblasts <i>in vitro</i>, and improved the morphology and histology of scars <i>in vivo</i>. Mechanistically, miR-203a-3p attenuated fibrosis by inactivating the PI3K/AKT/mTOR pathway by directly targeting PIK3CA.</p><p><strong>Conclusions: </strong>PIK3CA and the PI3K/AKT/mTOR pathway are actively involved in scar fibrosis and miR-203a-3p might serve as a potential strategy for hypertrophic scar therapy through targeting PIK3CA and inactivating the PI3K/AKT/mTOR pathway.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkad048"},"PeriodicalIF":6.3,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic reprogramming in skin wound healing. 皮肤伤口愈合过程中的代谢重编程。
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2024-01-02 eCollection Date: 2024-01-01 DOI: 10.1093/burnst/tkad047
Zitong Wang, Feng Zhao, Chengcheng Xu, Qiqi Zhang, Haiyue Ren, Xing Huang, Cai He, Jiajie Ma, Zhe Wang
{"title":"Metabolic reprogramming in skin wound healing.","authors":"Zitong Wang, Feng Zhao, Chengcheng Xu, Qiqi Zhang, Haiyue Ren, Xing Huang, Cai He, Jiajie Ma, Zhe Wang","doi":"10.1093/burnst/tkad047","DOIUrl":"10.1093/burnst/tkad047","url":null,"abstract":"<p><p>Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to different stimuli and forms of pressure. It helps cells resist external stress and provides them with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation, and migration of multiple cell types. During the glucose metabolic process in wounds, glucose transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid metabolism increases the number of fibroblasts and decreases the number of macrophages. It enhances local neovascularization and improves fibrin stability to promote extracellular matrix remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However, comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking. Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids, and amino acids during skin wound healing. Notably, we identified their targets with potential therapeutic value and elucidated their mechanisms of action.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkad047"},"PeriodicalIF":5.3,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S-Nitrosylation-mediated coupling of DJ-1 with PTEN induces PI3K/AKT/mTOR pathway-dependent keloid formation S-亚硝基化介导的DJ-1与PTEN偶联诱导PI3K/AKT/mTOR通路依赖性瘢痕疙瘩的形成
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2023-12-19 DOI: 10.1093/burnst/tkad024
Dongming Lv, Zhongye Xu, Pu Cheng, Zhicheng Hu, Yunxian Dong, Yanchao Rong, Hailin Xu, Zhiyong Wang, Xiaoling Cao, Wuguo Deng, Bing Tang
{"title":"S-Nitrosylation-mediated coupling of DJ-1 with PTEN induces PI3K/AKT/mTOR pathway-dependent keloid formation","authors":"Dongming Lv, Zhongye Xu, Pu Cheng, Zhicheng Hu, Yunxian Dong, Yanchao Rong, Hailin Xu, Zhiyong Wang, Xiaoling Cao, Wuguo Deng, Bing Tang","doi":"10.1093/burnst/tkad024","DOIUrl":"https://doi.org/10.1093/burnst/tkad024","url":null,"abstract":"Background Keloids are aberrant dermal wound healing characterized by invasive growth, extracellular matrix deposition, cytokine overexpression and easy recurrence. Many factors have been implicated as pathological causes of keloids, particularly hyperactive inflammation, tension alignment and genetic predisposition. S-Nitrosylation (SNO), a unique form of protein modification, is associated with the local inflammatory response but its function in excessive fibrosis and keloid formation remains unknown. We aimed to discover the association between protein SNO and keloid formation. Methods Normal and keloid fibroblasts were isolated from collected normal skin and keloid tissues. The obtained fibroblasts were cultured in DMEM supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The effects of DJ-1 on cell proliferation, apoptosis, migration and invasion, and on the expression of proteins were assayed. TurboID-based proximity labelling and liquid chromatography-mass spectrometry were conducted to explore the potential targets of DJ-1. Biotin-switch assays and transnitrosylation reactions were used to detect protein SNO. Quantitative data were compared by two-tailed Student’s t test. Results We found that DJ-1 served as an essential positive modulator to facilitate keloid cell proliferation, migration and invasion. A higher S-nitrosylated DJ-1 (SNO-DJ-1) level was observed in keloids, and the effect of DJ-1 on keloids was dependent on SNO of the Cys106 residue of the DJ-1 protein. SNO-DJ-1 was found to increase the level of phosphatase and tensin homolog (PTEN) S-nitrosylated at its Cys136 residue via transnitrosylation in keloids, thus diminishing the phosphatase activity of PTEN and activating the PI3K/AKT/mTOR pathway. Furthermore, Cys106-mutant DJ-1 is refractory to SNO and abrogates DJ-1-PTEN coupling and the SNO of the PTEN protein, thus repressing the PI3K/AKT/mTOR pathway and alleviating keloid formation. Importantly, the biological effect of DJ-1 in keloids is dependent on the SNO-DJ-1/SNO-PTEN/PI3K/AKT/mTOR axis. Conclusions For the first time, this study demonstrated the effect of transnitrosylation from DJ-1 to PTEN on promoting keloid formation via the PI3K/AKT/mTOR signaling pathway, suggesting that SNO of DJ-1 may be a novel therapeutic target for keloid treatment.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"29 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138770779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of gut microbiota changes on the intestinal mucus barrier in burned mice: a study using 16S rRNA and metagenomic sequencing. 肠道微生物群变化对烧伤小鼠肠道粘液屏障的影响:一项使用 16S rRNA 和元基因组测序的研究。
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2023-12-19 eCollection Date: 2023-01-01 DOI: 10.1093/burnst/tkad056
Xule Zha, Sen Su, Dan Wu, Panyang Zhang, Yan Wei, Shijun Fan, Qianying Huang, Xi Peng
{"title":"The impact of gut microbiota changes on the intestinal mucus barrier in burned mice: a study using 16S rRNA and metagenomic sequencing.","authors":"Xule Zha, Sen Su, Dan Wu, Panyang Zhang, Yan Wei, Shijun Fan, Qianying Huang, Xi Peng","doi":"10.1093/burnst/tkad056","DOIUrl":"10.1093/burnst/tkad056","url":null,"abstract":"<p><strong>Background: </strong>The gut microbiota is a complex ecosystem that plays a critical role in human health and disease. However, the relationship between gut microbiota and intestinal damage caused by burns is not well understood. The intestinal mucus layer is crucial for maintaining intestinal homeostasis and providing a physiological barrier against bacterial invasion. This study aims to investigate the impact of gut microbiota on the synthesis and degradation of intestinal mucus after burns and explore potential therapeutic targets for burn injury.</p><p><strong>Methods: </strong>A modified histopathological grading system was employed to investigate the effects of burn injury on colon tissue and the intestinal mucus barrier in mice. Subsequently, 16S ribosomal RNA sequencing was used to analyze alterations in the gut microbiota at days 1-10 post-burn. Based on this, metagenomic sequencing was conducted on samples collected at days 1, 5 and 10 to investigate changes in mucus-related microbiota and explore potential underlying mechanisms.</p><p><strong>Results: </strong>Our findings showed that the mucus barrier was disrupted and that bacterial translocation occurred on day 3 following burn injury in mice. Moreover, the gut microbiota in mice was significantly disrupted from days 1 to 3 following burn injury, but gradually recovered to normal as the disease progressed. Specifically, there was a marked increase in the abundance of symbiotic and pathogenic bacteria associated with mucin degradation on day 1 after burns, but the abundance returned to normal on day 5. Conversely, the abundance of probiotic bacteria associated with mucin synthesis changed in the opposite direction. Further analysis revealed that after a burn injury, bacteria capable of degrading mucus may utilize glycoside hydrolases, flagella and internalins to break down the mucus layer, while bacteria that synthesize mucus may help restore the mucus layer by promoting the production of short-chain fatty acids.</p><p><strong>Conclusions: </strong>Burn injury leads to disruption of colonic mucus barrier and dysbiosis of gut microbiota. Some commensal and pathogenic bacteria may participate in mucin degradation via glycoside hydrolases, flagella, internalins, etc. Probiotics may provide short-chain fatty acids (particularly butyrate) as an energy source for stressed intestinal epithelial cells, promote mucin synthesis and accelerate repair of mucus layer.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"11 ","pages":"tkad056"},"PeriodicalIF":5.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The clinical differentiation of blood culture-positive and -negative sepsis in burn patients: a retrospective cohort study 烧伤患者血培养阳性和阴性败血症的临床鉴别:一项回顾性队列研究
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2023-12-19 DOI: 10.1093/burnst/tkad031
Jaechul Yoon, Dohern Kym, Jun Hur, Jongsoo Park, Myongjin Kim, Yong Suk Cho, Wook Chun, Dogeon Yoon
{"title":"The clinical differentiation of blood culture-positive and -negative sepsis in burn patients: a retrospective cohort study","authors":"Jaechul Yoon, Dohern Kym, Jun Hur, Jongsoo Park, Myongjin Kim, Yong Suk Cho, Wook Chun, Dogeon Yoon","doi":"10.1093/burnst/tkad031","DOIUrl":"https://doi.org/10.1093/burnst/tkad031","url":null,"abstract":"Background Sepsis is a potentially life-threatening condition that occurs when the body’s response to infection leads to widespread inflammation and tissue damage. Negative cultures can make it difficult for clinicians to make a diagnosis and may raise questions about the validity of the definition of sepsis. In addition, the clinical distinctions between burn patients with blood culture-positive and -negative sepsis are also poorly understood. Therefore, this study aimed to examine the clinical differences between blood culture-positive and -negative sepsis in burn patients in order to improve the understanding of the pathophysiology and epidemiology of sepsis in this population. Methods This study had a retrospective design, and the participants were adults aged ≥18 years. Patients diagnosed with sepsis were divided into two groups based on their blood culture results within 1 week of sepsis diagnosis. Results We enrolled 1643 patients admitted to our institution’s burn intensive care unit between January 2010 and December 2021. pH, platelet count, bicarbonate and haematocrit were significant in both the positive and negative groups. However, lymphocyte, red cell distribution width and blood urea nitrogen were significant only in the positive group, whereas lactate dehydrogenase was significant only in the negative group. Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumonia are common gram-negative bacterial species, and Staphylococcus aureus and Staphylococcus epidermidis are common gram-positive bacterial species seen in burn patients with positive blood cultures. Carbapenem resistance was found to be associated with an unfavourable prognosis in gram-negative bacteria, with the exception of P. aeruginosa. Conclusions pH, platelet count, bicarbonate and haematocrit were routine biomarkers that demonstrated statistical significance in both groups. Lactate dehydrogenase was significant in the blood-negative group, while red cell distribution width, blood urea nitrogen and lymphocyte count were significant in the positive group. Furthermore, the most common causes of sepsis are gram-negative bacteria, including A. baumannii, K. pneumoniae and P. aeruginosa. Additionally, resistance to carbapenems is associated with unfavourable outcomes.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"26 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138770847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma lipidomics reveal systemic changes persistent throughout early life following a childhood burn injury 血浆脂质组学揭示了儿童烧伤后整个生命早期持续存在的系统性变化
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2023-12-07 DOI: 10.1093/burnst/tkad044
Eva Kierath, Monique Ryan, Elaine Holmes, Jeremy K Nicholson, Mark W Fear, Fiona M Wood, Luke Whiley, Nicola Gray
{"title":"Plasma lipidomics reveal systemic changes persistent throughout early life following a childhood burn injury","authors":"Eva Kierath, Monique Ryan, Elaine Holmes, Jeremy K Nicholson, Mark W Fear, Fiona M Wood, Luke Whiley, Nicola Gray","doi":"10.1093/burnst/tkad044","DOIUrl":"https://doi.org/10.1093/burnst/tkad044","url":null,"abstract":"Background Non-severe paediatric burns can result in poor long-term health outcomes. This occurs even in cases with good acute burn-related outcomes, including minimal scarring. The mechanisms that underpin the transition from non-severe burn to sustained negative long-term health impacts are currently unknown. However, sustained metabolic and immune changes have been observed in paediatric burn studies, suggesting these changes may be important. The plasma lipidome consists of a rich pool of bioactive metabolites that play critical roles in systemic processes including molecular signalling and inflammation. We hypothesised that changes in the plasma lipidome may reflect underlying changes in health status and be linked to long-term health after burn trauma. Methods This study analysed the lipidome in children who had previously experienced a non-severe burn, compared to non-injured controls. Thirty-three participants were recruited between the ages of 5 and 8 years who had experienced a non-severe burn between the ages of 1 and 3 years. Plasma samples were also collected from a non-injured, healthy, age and gender matched control group (n = 21). Plasma lipids were measured using reversed-phase liquid chromatographymass spectrometery (LC-MS). Results In total 838 reproducible lipid species from 19 sub-classes passed quality control procedures and progressed to statistical analysis. Analysis of individual lipid metabolites showed significantly higher concentrations of lysophosphatidylethanolamines and phosphatidylethanolamines, and significantly lower concentrations in myristic, palmitic and palmitoleic acids in the plasma of those who had experienced burn injury compared to controls. Conclusion Long-term changes in the lipid profile may give insight into the mechanisms underlying poor long-term health subsequent to non-severe burn injury. Further work to investigate the relationship between long-term pathology and lipidomic changes may lead to a better understanding of the causes of secondary morbidity post-burn and to clinical intervention to reduce the long-term health burden of burn trauma.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138550634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of COVID-19 on clinical outcomes of burn patients COVID-19 对烧伤患者临床疗效的影响
IF 5.3 1区 医学
Burns & Trauma Pub Date : 2023-12-07 DOI: 10.1093/burnst/tkad042
Elliot T Walters, Alen Palackic, Camila Franco-Mesa, Nikhil R Shah, Michael J Erickson, Steven E Wolf
{"title":"The impact of COVID-19 on clinical outcomes of burn patients","authors":"Elliot T Walters, Alen Palackic, Camila Franco-Mesa, Nikhil R Shah, Michael J Erickson, Steven E Wolf","doi":"10.1093/burnst/tkad042","DOIUrl":"https://doi.org/10.1093/burnst/tkad042","url":null,"abstract":"Background Multiple studies have shown the SARS-CoV-2 virus (COVID-19) to be associated with deleterious outcomes in a wide range of patients. The impact of COVID-19 has not been well investigated among burned patients. We suspect that patients will have worsened respiratory and thrombotic complications, ultimately leading to increased mortality. The objective of this study is to determine the impact a concurrent infection of COVID-19 has on clinical outcomes after a burn injury. Methods This is a retrospective, propensity matched, cohort study. We examined a de-identified database of electronic medical records of over 75 million patients across 75 health care associations in the United States for patients treated for thermal burns from 1 January 2020, to 31 July 2021, and those who also were diagnosed with COVID-19 infection within one day before or after injury based on International Classification of Disease, tenth revision (ICD-10) codes. Study participants included adults who were treated for a burn injury during the study period. Results We included 736 patients with burn injury and concomitant COVID-19 infection matched to 736 patients with burn injury and no concurrent COVID-19 infection (total 1472 patients, mean age 36.3 ± 24.3). We found no significant increase in mortality observed for patients with concurrent COVID-19 (OR 1.203, 95% CI 0.517–2.803; p = 0.6675). We did observe significant increase in infections (OR 3.537, 95% CI 2.798–4.471; p = 0.0001), thrombotic complications (OR 2.342, 95% CI 1.351–4.058; p = 0.0018), as was the incidence of hypertrophic scarring (OR 3.368, 95% CI 2.326–4.877; p = 0.0001). Conclusions We observed that concurrent COVID-19 infection was associated with an increase in infections, thrombosis and hypertrophic scarring but no increase in mortality in our cohort of burn patients.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"108 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138550686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信