Calcolo最新文献

筛选
英文 中文
Tensor completion via multi-directional partial tensor nuclear norm with total variation regularization 通过具有总变异正则化的多向部分张量核规范实现张量补全
IF 1.7 2区 数学
Calcolo Pub Date : 2024-03-04 DOI: 10.1007/s10092-024-00569-1
Rong Li, Bing Zheng
{"title":"Tensor completion via multi-directional partial tensor nuclear norm with total variation regularization","authors":"Rong Li, Bing Zheng","doi":"10.1007/s10092-024-00569-1","DOIUrl":"https://doi.org/10.1007/s10092-024-00569-1","url":null,"abstract":"<p>This paper addresses the tensor completion problem, whose task is to estimate missing values with limited information. However, the crux of this problem is how to reasonably represent the low-rank structure embedded in the underlying data. In this work, we consider a new low-rank tensor completion model combined with the multi-directional partial tensor nuclear norm and the total variation (TV) regularization. Specifically, the partial sum of the tensor nuclear norm (PSTNN) is used to narrow the gap between the tensor tubal rank and its lower convex envelop [i.e. tensor nuclear norm (TNN)], and the TV regularization is adopted to maintain the smooth structure along the spatial dimension. In addition, the weighted sum of the tensor nuclear norm (WSTNN) is introduced to replace the traditional TNN to extend the PSTNN to the high-order tensor, which also can flexibly handle different correlations along different modes, resulting in an improved low <i>d</i>-tubal rank approximation. To tackle this new model, we develop the alternating directional method of multipliers (ADMM) algorithm tailored for the proposed optimization problem. Theoretical analysis of the ADMM is conducted to prove the Karush–Kuhn–Tucker (KKT) conditions. Numerical examples demonstrate the proposed method outperforms some state-of-the-art methods in qualitative and quantitative aspects.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Gauss–Newton method for mixed least squares-total least squares problems 混合最小二乘法-总最小二乘法问题的高斯-牛顿法
IF 1.7 2区 数学
Calcolo Pub Date : 2024-03-01 DOI: 10.1007/s10092-024-00568-2
Qiaohua Liu, Shan Wang, Yimin Wei
{"title":"A Gauss–Newton method for mixed least squares-total least squares problems","authors":"Qiaohua Liu, Shan Wang, Yimin Wei","doi":"10.1007/s10092-024-00568-2","DOIUrl":"https://doi.org/10.1007/s10092-024-00568-2","url":null,"abstract":"<p>The approximate linear equation <span>(Axapprox b)</span> with some columns of <i>A</i> error-free can be solved via mixed least squares-total least squares (MTLS) model by minimizing a nonlinear function. This paper is devoted to the Gauss–Newton iteration for the MTLS problem. With an appropriately chosen initial vector, each iteration step of the standard Gauss–Newton method requires to solve a smaller-size least squares problem, in which the QR of the coefficient matrix needs a rank-one modification. To improve the convergence, we devise a relaxed Gauss–Newton (RGN) method by introducing a relaxation factor and provide the convergence results as well. The convergence is shown to be closely related to the ratio of the square of subspace-restricted singular values of [<i>A</i>, <i>b</i>]. The RGN can also be modified to solve the total least squares (TLS) problem. Applying the RGN method to a Bursa–Wolf model in parameter estimation, numerical results show that the RGN-based MTLS method behaves much better than the RGN-based TLS method. Theoretical convergence properties of the RGN-MTLS algorithm are also illustrated by numerical tests.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140018579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supercloseness of the NIPG method for a singularly perturbed convection diffusion problem on Shishkin mesh Shishkin 网格上奇异扰动对流扩散问题的 NIPG 方法的超粘性
IF 1.7 2区 数学
Calcolo Pub Date : 2024-02-28 DOI: 10.1007/s10092-024-00571-7
{"title":"Supercloseness of the NIPG method for a singularly perturbed convection diffusion problem on Shishkin mesh","authors":"","doi":"10.1007/s10092-024-00571-7","DOIUrl":"https://doi.org/10.1007/s10092-024-00571-7","url":null,"abstract":"<h3>Abstract</h3> <p>Some popular stabilization techniques, such as nonsymmetric interior penalty Galerkin (NIPG) method, have important application value in computational fluid dynamics. In this paper, we analyze a NIPG method on Shishkin mesh for a singularly perturbed convection diffusion problem, which is a typical simplified fluid model. According to the characteristics of the solution, the mesh and the numerical scheme, a new interpolation is designed for convergence analysis. More specifically, Gauß Lobatto interpolation and Gauß Radau interpolation are introduced inside and outside the layer, respectively. On the basis of that, by selecting special penalty parameters at different mesh points, we establish supercloseness of almost <span> <span>(k+1)</span> </span> order in an energy norm. Here <span> <span>(kge 1)</span> </span> is the degree of piecewise polynomials. Then, a simple post-processing operator is constructed, and it is proved that the corresponding post-processing can make the numerical solution achieve higher accuracy. In this process, a new analysis is proposed for the stability analysis of this operator. Finally, superconvergence is derived under a discrete energy norm. These conclusions can be verified numerically. Furthermore, numerical experiments show that the increase of polynomial degree <em>k</em> and mesh parameter <em>N</em>, the decrease of perturbation parameter <span> <span>(varepsilon )</span> </span> or the use of over-penalty technology may increase the condition number of linear system. Therefore, we need to cautiously consider the application of high-order algorithm.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical methods for the forward and backward problems of a time-space fractional diffusion equation 时空分数扩散方程前向和后向问题的数值方法
IF 1.7 2区 数学
Calcolo Pub Date : 2024-02-21 DOI: 10.1007/s10092-024-00567-3
Xiaoli Feng, Xiaoyu Yuan, Meixia Zhao, Zhi Qian
{"title":"Numerical methods for the forward and backward problems of a time-space fractional diffusion equation","authors":"Xiaoli Feng, Xiaoyu Yuan, Meixia Zhao, Zhi Qian","doi":"10.1007/s10092-024-00567-3","DOIUrl":"https://doi.org/10.1007/s10092-024-00567-3","url":null,"abstract":"<p>In this paper, we consider the numerical methods for both the forward and backward problems of a time-space fractional diffusion equation. For the two-dimensional forward problem, we propose a finite difference method. The stability of the scheme and the corresponding Fast Preconditioned Conjugated Gradient algorithm are given. For the backward problem, since it is ill-posed, we use a quasi-boundary-value method to deal with it. Based on the Fourier transform, we obtain two kinds of order optimal convergence rates by using an a-priori and an a-posteriori regularization parameter choice rules. Numerical examples for both forward and backward problems show that the proposed numerical methods work well.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal learning 优化学习
IF 1.7 2区 数学
Calcolo Pub Date : 2024-02-19 DOI: 10.1007/s10092-023-00564-y
Peter Binev, Andrea Bonito, Ronald DeVore, Guergana Petrova
{"title":"Optimal learning","authors":"Peter Binev, Andrea Bonito, Ronald DeVore, Guergana Petrova","doi":"10.1007/s10092-023-00564-y","DOIUrl":"https://doi.org/10.1007/s10092-023-00564-y","url":null,"abstract":"<p>This paper studies the problem of learning an unknown function <i>f</i> from given data about <i>f</i>. The learning problem is to give an approximation <span>({hat{f}})</span> to <i>f</i> that predicts the values of <i>f</i> away from the data. There are numerous settings for this learning problem depending on (i) what additional information we have about <i>f</i> (known as a model class assumption), (ii) how we measure the accuracy of how well <span>({hat{f}})</span> predicts <i>f</i>, (iii) what is known about the data and data sites, (iv) whether the data observations are polluted by noise. A mathematical description of the optimal performance possible (the smallest possible error of recovery) is known in the presence of a model class assumption. Under standard model class assumptions, it is shown in this paper that a near optimal <span>({hat{f}})</span> can be found by solving a certain finite-dimensional over-parameterized optimization problem with a penalty term. Here, near optimal means that the error is bounded by a fixed constant times the optimal error. This explains the advantage of over-parameterization which is commonly used in modern machine learning. The main results of this paper prove that over-parameterized learning with an appropriate loss function gives a near optimal approximation <span>({hat{f}})</span> of the function <i>f</i> from which the data is collected. Quantitative bounds are given for how much over-parameterization needs to be employed and how the penalization needs to be scaled in order to guarantee a near optimal recovery of <i>f</i>. An extension of these results to the case where the data is polluted by additive deterministic noise is also given.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete duality finite volume scheme for a generalized Joule heating problem 广义焦耳加热问题的离散二元有限体积方案
IF 1.7 2区 数学
Calcolo Pub Date : 2024-02-07 DOI: 10.1007/s10092-024-00566-4
Mustapha Bahari, El-Houssaine Quenjel, Mohamed Rhoudaf
{"title":"Discrete duality finite volume scheme for a generalized Joule heating problem","authors":"Mustapha Bahari, El-Houssaine Quenjel, Mohamed Rhoudaf","doi":"10.1007/s10092-024-00566-4","DOIUrl":"https://doi.org/10.1007/s10092-024-00566-4","url":null,"abstract":"<p>In this paper we conceive and analyze a discrete duality finite volume (DDFV) scheme for the unsteady generalized thermistor problem, including a <i>p</i>-Laplacian for the diffusion and a Joule heating source. As in the continuous setting, the main difficulty in the design of the discrete model comes from the Joule heating term. To cope with this issue, the Joule heating term is replaced with an equivalent key formulation on which a fully implicit scheme is constructed. Introducing a tricky cut-off function in the proposed discretization, we are able to recover the energy estimates on the discrete temperature. Another feature of this approach is that we dispense with the discrete maximum principle on the approximate electric potential, which in essence poses restrictive constraints on the mesh shape. Then, the existence of discrete solution to the coupled scheme is established. Compactness estimates are also shown. Under general assumptions on the data and meshes, the convergence of the numerical scheme is addressed. Numerical results are finally presented to show the efficiency and accuracy of the proposed methodology as well as the behavior of the implemented nonlinear solver.\u0000</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discontinuous Galerkin methods for Stokes equations under power law slip boundary condition: a priori analysis 幂律滑移边界条件下斯托克斯方程的非连续伽勒金方法:先验分析
IF 1.7 2区 数学
Calcolo Pub Date : 2024-02-01 DOI: 10.1007/s10092-023-00563-z
Djoko Kamdem Jules, Gidey Hagos, Koko Jonas, Sayah Toni
{"title":"Discontinuous Galerkin methods for Stokes equations under power law slip boundary condition: a priori analysis","authors":"Djoko Kamdem Jules, Gidey Hagos, Koko Jonas, Sayah Toni","doi":"10.1007/s10092-023-00563-z","DOIUrl":"https://doi.org/10.1007/s10092-023-00563-z","url":null,"abstract":"<p>In this work, three discontinuous Galerkin (DG) methods are formulated and analysed to solve Stokes equations with power law slip boundary condition. Numerical examples exhibited confirm the theoretical findings, moreover we also test the methods on the lid Driven cavity and compare the three DG methods.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139663101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal approximation of infinite-dimensional holomorphic functions 无限维全貌函数的最优逼近
IF 1.7 2区 数学
Calcolo Pub Date : 2024-01-29 DOI: 10.1007/s10092-023-00565-x
Ben Adcock, Nick Dexter, Sebastian Moraga
{"title":"Optimal approximation of infinite-dimensional holomorphic functions","authors":"Ben Adcock, Nick Dexter, Sebastian Moraga","doi":"10.1007/s10092-023-00565-x","DOIUrl":"https://doi.org/10.1007/s10092-023-00565-x","url":null,"abstract":"<p>Over the several decades, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples <i>m</i>. Our work focuses on providing theoretical approximation guarantees for the class of so-called <span>((varvec{b},varepsilon ))</span>-<i>holomorphic</i> functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of <i>m</i>-widths, Gelfand widths and Kolmogorov widths. We study two cases, <i>known</i> and <i>unknown anisotropy</i>, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139649608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon 多边形中的半线性椭圆偏微分方程的解析正则性和解法近似
IF 1.7 2区 数学
Calcolo Pub Date : 2024-01-11 DOI: 10.1007/s10092-023-00562-0
Yanchen He, Christoph Schwab
{"title":"Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon","authors":"Yanchen He, Christoph Schwab","doi":"10.1007/s10092-023-00562-0","DOIUrl":"https://doi.org/10.1007/s10092-023-00562-0","url":null,"abstract":"<p>In an open, bounded Lipschitz polygon <span>(Omega subset mathbb {R}^2)</span>, we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term <i>f</i> which is analytic in <span>(Omega )</span>. The boundary conditions on each edge of <span>(partial Omega )</span> are either homogeneous Dirichlet or homogeneous Neumann BCs. The presently established weighted analytic regularity of solutions implies exponential convergence of various approximation schemes: <i>hp</i>-finite elements, reduced order models via Kolmogorov <i>n</i>-widths of solution sets in <span>(H^1(Omega ))</span>, quantized tensor formats and certain deep neural networks.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139460559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Hermite-type virtual element method with interior penalty for the fourth-order elliptic problem 四阶椭圆问题的带内部惩罚的赫米特型虚拟元素法
IF 1.7 2区 数学
Calcolo Pub Date : 2024-01-03 DOI: 10.1007/s10092-023-00555-z
Jikun Zhao, Teng Chen, Bei Zhang, Xiaojing Dong
{"title":"The Hermite-type virtual element method with interior penalty for the fourth-order elliptic problem","authors":"Jikun Zhao, Teng Chen, Bei Zhang, Xiaojing Dong","doi":"10.1007/s10092-023-00555-z","DOIUrl":"https://doi.org/10.1007/s10092-023-00555-z","url":null,"abstract":"<p>We present a Hermite-type virtual element method with interior penalty to solve the fourth-order elliptic problem over general polygonal meshes, where some interior penalty terms are added to impose the <span>(C^1)</span> continuity. A <span>(C^0)</span>-continuous Hermite-type virtual element with local <span>(H^2)</span> regularity is constructed, such that it can be used in the interior penalty scheme. We prove the boundedness of basis functions and interpolation error estimates of Hermite-type virtual element. After introducing a discrete energy norm, we present the optimal convergence of the interior penalty scheme. Compared with some existing methods, the proposed interior penalty method uses fewer degrees of freedom. Finally, we verify the theoretical results through some numerical examples.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139093136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信