Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanchen He, Christoph Schwab
{"title":"Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon","authors":"Yanchen He, Christoph Schwab","doi":"10.1007/s10092-023-00562-0","DOIUrl":null,"url":null,"abstract":"<p>In an open, bounded Lipschitz polygon <span>\\(\\Omega \\subset \\mathbb {R}^2\\)</span>, we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term <i>f</i> which is analytic in <span>\\(\\Omega \\)</span>. The boundary conditions on each edge of <span>\\(\\partial \\Omega \\)</span> are either homogeneous Dirichlet or homogeneous Neumann BCs. The presently established weighted analytic regularity of solutions implies exponential convergence of various approximation schemes: <i>hp</i>-finite elements, reduced order models via Kolmogorov <i>n</i>-widths of solution sets in <span>\\(H^1(\\Omega )\\)</span>, quantized tensor formats and certain deep neural networks.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00562-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In an open, bounded Lipschitz polygon \(\Omega \subset \mathbb {R}^2\), we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term f which is analytic in \(\Omega \). The boundary conditions on each edge of \(\partial \Omega \) are either homogeneous Dirichlet or homogeneous Neumann BCs. The presently established weighted analytic regularity of solutions implies exponential convergence of various approximation schemes: hp-finite elements, reduced order models via Kolmogorov n-widths of solution sets in \(H^1(\Omega )\), quantized tensor formats and certain deep neural networks.

多边形中的半线性椭圆偏微分方程的解析正则性和解法近似
在一个开放的、有界的 Lipschitz 多边形(\Omega \subset \mathbb {R}^2\)中,我们为一个半线性的、具有解析非线性的椭圆 PDE 建立了加权解析正则性,该 PDE 受制于一个在 \(\Omega \) 中解析的源项 f。\(\partial \Omega \)每条边上的边界条件要么是均相 Dirichlet,要么是均相 Neumann BC。目前确定的解的加权解析正则性意味着各种近似方案的指数收敛性:hp-有限元、通过 \(H^1(\Omega )\) 中解集的 Kolmogorov n 宽的降阶模型、量化张量格式和某些深度神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信