Yuhui Yang, Charles Wing Ho Green, Amiya K. Pani, Yubin Yan
{"title":"High-order schemes based on extrapolation for semilinear fractional differential equation","authors":"Yuhui Yang, Charles Wing Ho Green, Amiya K. Pani, Yubin Yan","doi":"10.1007/s10092-023-00553-1","DOIUrl":null,"url":null,"abstract":"<p>By rewriting the Riemann–Liouville fractional derivative as Hadamard finite-part integral and with the help of piecewise quadratic interpolation polynomial approximations, a numerical scheme is developed for approximating the Riemann–Liouville fractional derivative of order <span>\\(\\alpha \\in (1,2).\\)</span> The error has the asymptotic expansion <span>\\( \\big ( d_{3} \\tau ^{3- \\alpha } + d_{4} \\tau ^{4-\\alpha } + d_{5} \\tau ^{5-\\alpha } + \\cdots \\big ) + \\big ( d_{2}^{*} \\tau ^{4} + d_{3}^{*} \\tau ^{6} + d_{4}^{*} \\tau ^{8} + \\cdots \\big ) \\)</span> at any fixed time <span>\\(t_{N}= T, N \\in {\\mathbb {Z}}^{+}\\)</span>, where <span>\\(d_{i}, i=3, 4,\\ldots \\)</span> and <span>\\(d_{i}^{*}, i=2, 3,\\ldots \\)</span> denote some suitable constants and <span>\\(\\tau = T/N\\)</span> denotes the step size. Based on this discretization, a new scheme for approximating the linear fractional differential equation of order <span>\\(\\alpha \\in (1,2)\\)</span> is derived and its error is shown to have a similar asymptotic expansion. As a consequence, a high-order scheme for approximating the linear fractional differential equation is obtained by extrapolation. Further, a high-order scheme for approximating a semilinear fractional differential equation is introduced and analyzed. Several numerical experiments are conducted to show that the numerical results are consistent with our theoretical findings.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00553-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
By rewriting the Riemann–Liouville fractional derivative as Hadamard finite-part integral and with the help of piecewise quadratic interpolation polynomial approximations, a numerical scheme is developed for approximating the Riemann–Liouville fractional derivative of order \(\alpha \in (1,2).\) The error has the asymptotic expansion \( \big ( d_{3} \tau ^{3- \alpha } + d_{4} \tau ^{4-\alpha } + d_{5} \tau ^{5-\alpha } + \cdots \big ) + \big ( d_{2}^{*} \tau ^{4} + d_{3}^{*} \tau ^{6} + d_{4}^{*} \tau ^{8} + \cdots \big ) \) at any fixed time \(t_{N}= T, N \in {\mathbb {Z}}^{+}\), where \(d_{i}, i=3, 4,\ldots \) and \(d_{i}^{*}, i=2, 3,\ldots \) denote some suitable constants and \(\tau = T/N\) denotes the step size. Based on this discretization, a new scheme for approximating the linear fractional differential equation of order \(\alpha \in (1,2)\) is derived and its error is shown to have a similar asymptotic expansion. As a consequence, a high-order scheme for approximating the linear fractional differential equation is obtained by extrapolation. Further, a high-order scheme for approximating a semilinear fractional differential equation is introduced and analyzed. Several numerical experiments are conducted to show that the numerical results are consistent with our theoretical findings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.