{"title":"The Hermite-type virtual element method with interior penalty for the fourth-order elliptic problem","authors":"Jikun Zhao, Teng Chen, Bei Zhang, Xiaojing Dong","doi":"10.1007/s10092-023-00555-z","DOIUrl":null,"url":null,"abstract":"<p>We present a Hermite-type virtual element method with interior penalty to solve the fourth-order elliptic problem over general polygonal meshes, where some interior penalty terms are added to impose the <span>\\(C^1\\)</span> continuity. A <span>\\(C^0\\)</span>-continuous Hermite-type virtual element with local <span>\\(H^2\\)</span> regularity is constructed, such that it can be used in the interior penalty scheme. We prove the boundedness of basis functions and interpolation error estimates of Hermite-type virtual element. After introducing a discrete energy norm, we present the optimal convergence of the interior penalty scheme. Compared with some existing methods, the proposed interior penalty method uses fewer degrees of freedom. Finally, we verify the theoretical results through some numerical examples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00555-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a Hermite-type virtual element method with interior penalty to solve the fourth-order elliptic problem over general polygonal meshes, where some interior penalty terms are added to impose the \(C^1\) continuity. A \(C^0\)-continuous Hermite-type virtual element with local \(H^2\) regularity is constructed, such that it can be used in the interior penalty scheme. We prove the boundedness of basis functions and interpolation error estimates of Hermite-type virtual element. After introducing a discrete energy norm, we present the optimal convergence of the interior penalty scheme. Compared with some existing methods, the proposed interior penalty method uses fewer degrees of freedom. Finally, we verify the theoretical results through some numerical examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.