{"title":"无限维全貌函数的最优逼近","authors":"Ben Adcock, Nick Dexter, Sebastian Moraga","doi":"10.1007/s10092-023-00565-x","DOIUrl":null,"url":null,"abstract":"<p>Over the several decades, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples <i>m</i>. Our work focuses on providing theoretical approximation guarantees for the class of so-called <span>\\((\\varvec{b},\\varepsilon )\\)</span>-<i>holomorphic</i> functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of <i>m</i>-widths, Gelfand widths and Kolmogorov widths. We study two cases, <i>known</i> and <i>unknown anisotropy</i>, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal approximation of infinite-dimensional holomorphic functions\",\"authors\":\"Ben Adcock, Nick Dexter, Sebastian Moraga\",\"doi\":\"10.1007/s10092-023-00565-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over the several decades, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples <i>m</i>. Our work focuses on providing theoretical approximation guarantees for the class of so-called <span>\\\\((\\\\varvec{b},\\\\varepsilon )\\\\)</span>-<i>holomorphic</i> functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of <i>m</i>-widths, Gelfand widths and Kolmogorov widths. We study two cases, <i>known</i> and <i>unknown anisotropy</i>, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-023-00565-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00565-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
几十年来,在计算科学与工程领域,特别是在计算不确定性量化方面,从样本逼近无限维函数的方法越来越受到关注。这主要是由于作为参数微分方程解的函数在化学、经济学、工程学和物理学等各个领域的重要性。虽然获取这类函数准确可靠的近似值本身就很困难,但目前的基准方法利用了这样一个事实,即这类函数通常属于某些类全态函数,可以在无限维度上获得相对于(潜在自适应)样本数 m 的代数收敛率。我们的工作重点是为所谓的 \((\varvec{b},\varepsilon )\) -全纯函数类提供理论上的近似保证,证明这些代数率是无限维度中巴纳赫值函数可能达到的最佳代数率。我们结合 m 宽度、Gelfand 宽度和 Kolmogorov 宽度理论,利用对离散问题的还原建立了下限。我们研究了已知各向异性和未知各向异性两种情况,其中变量的相对重要性分别为已知和未知。本文的一个重要结论是,在后一种情况下,如果不对变量进行某种固有排序,即使样本是自适应选择的,也不可能从有限样本中得到近似值。最后,在这两种情况下,我们都展示了接近最优的非自适应(随机)采样和恢复策略,这些策略能达到与下限接近的速率。
Optimal approximation of infinite-dimensional holomorphic functions
Over the several decades, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples m. Our work focuses on providing theoretical approximation guarantees for the class of so-called \((\varvec{b},\varepsilon )\)-holomorphic functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of m-widths, Gelfand widths and Kolmogorov widths. We study two cases, known and unknown anisotropy, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.