关于三维非结构化有限元离散的离散格林函数的实在性

IF 1.4 2区 数学 Q1 MATHEMATICS
Calcolo Pub Date : 2023-12-22 DOI:10.1007/s10092-023-00556-y
Andrew P. Miller
{"title":"关于三维非结构化有限元离散的离散格林函数的实在性","authors":"Andrew P. Miller","doi":"10.1007/s10092-023-00556-y","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is twofold. First, we prove <span>\\(L^p\\)</span> estimates for a regularized Green’s function in three dimensions. We then establish new estimates for the discrete Green’s function and obtain some positivity results. In particular, we prove that the discrete Green’s functions with singularity in the interior of the domain cannot be bounded uniformly with respect of the mesh parameter <i>h</i>. Actually, we show that at the singularity the discrete Green’s function is of order <span>\\(h^{-1}\\)</span>, which is consistent with the behavior of the continuous Green’s function. In addition, we also show that the discrete Green’s function is positive and decays exponentially away from the singularity. We also provide numerically persistent negative values of the discrete Green’s function on Delaunay meshes which then implies a discrete Harnack inequality cannot be established for unstructured finite element discretizations.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the positivity of the discrete Green’s function for unstructured finite element discretizations in three dimensions\",\"authors\":\"Andrew P. Miller\",\"doi\":\"10.1007/s10092-023-00556-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is twofold. First, we prove <span>\\\\(L^p\\\\)</span> estimates for a regularized Green’s function in three dimensions. We then establish new estimates for the discrete Green’s function and obtain some positivity results. In particular, we prove that the discrete Green’s functions with singularity in the interior of the domain cannot be bounded uniformly with respect of the mesh parameter <i>h</i>. Actually, we show that at the singularity the discrete Green’s function is of order <span>\\\\(h^{-1}\\\\)</span>, which is consistent with the behavior of the continuous Green’s function. In addition, we also show that the discrete Green’s function is positive and decays exponentially away from the singularity. We also provide numerically persistent negative values of the discrete Green’s function on Delaunay meshes which then implies a discrete Harnack inequality cannot be established for unstructured finite element discretizations.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-023-00556-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00556-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文有两个目的。首先,我们证明了三维正则化格林函数的 \(L^p\) 估计值。然后,我们建立了离散格林函数的新估计,并得到了一些正验结果。事实上,我们证明了在奇点处离散格林函数的阶(h^{-1}\),这与连续格林函数的行为一致。此外,我们还证明离散格林函数是正的,并且在远离奇点处呈指数衰减。我们还提供了离散格林函数在 Delaunay 网格上的数值持续负值,这意味着离散哈纳克不等式无法在非结构化有限元离散中成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the positivity of the discrete Green’s function for unstructured finite element discretizations in three dimensions

On the positivity of the discrete Green’s function for unstructured finite element discretizations in three dimensions

The aim of this paper is twofold. First, we prove \(L^p\) estimates for a regularized Green’s function in three dimensions. We then establish new estimates for the discrete Green’s function and obtain some positivity results. In particular, we prove that the discrete Green’s functions with singularity in the interior of the domain cannot be bounded uniformly with respect of the mesh parameter h. Actually, we show that at the singularity the discrete Green’s function is of order \(h^{-1}\), which is consistent with the behavior of the continuous Green’s function. In addition, we also show that the discrete Green’s function is positive and decays exponentially away from the singularity. We also provide numerically persistent negative values of the discrete Green’s function on Delaunay meshes which then implies a discrete Harnack inequality cannot be established for unstructured finite element discretizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信