Natural Product Reports最新文献

筛选
英文 中文
Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology 嘌呤核苷抗生素:利用化学和生物学的最新合成进展。
IF 11.9 1区 化学
Natural Product Reports Pub Date : 2024-06-19 DOI: 10.1039/d3np00051f
Jonas Motter , Caecilie M. M. Benckendorff , Sarah Westarp , Peter Sunde-Brown , Peter Neubauer , Anke Kurreck , Gavin J. Miller
{"title":"Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology","authors":"Jonas Motter ,&nbsp;Caecilie M. M. Benckendorff ,&nbsp;Sarah Westarp ,&nbsp;Peter Sunde-Brown ,&nbsp;Peter Neubauer ,&nbsp;Anke Kurreck ,&nbsp;Gavin J. Miller","doi":"10.1039/d3np00051f","DOIUrl":"10.1039/d3np00051f","url":null,"abstract":"<div><p>Covering: 2019 to 2023</p></div><div><p>Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":11.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139400948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hot off the Press 新闻热点
IF 11.9 1区 化学
Natural Product Reports Pub Date : 2024-06-19 DOI: 10.1039/d4np90026j
Robert A. Hill , Andrew Sutherland
{"title":"Hot off the Press","authors":"Robert A. Hill ,&nbsp;Andrew Sutherland","doi":"10.1039/d4np90026j","DOIUrl":"10.1039/d4np90026j","url":null,"abstract":"<div><p>A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products, such as penihemeroterpenoid A from <em>Penicillium herquei</em>.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":11.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing 释放潜能:放线菌中用于基因组编辑的 I 型 CRISPR-Cas 系统。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-06-18 DOI: 10.1039/D4NP00010B
Shuliu Wang, Xiaoqian Zeng, Yue Jiang, Weishan Wang, Linquan Bai, Yinhua Lu, Lixin Zhang and Gao-Yi Tan
{"title":"Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing","authors":"Shuliu Wang, Xiaoqian Zeng, Yue Jiang, Weishan Wang, Linquan Bai, Yinhua Lu, Lixin Zhang and Gao-Yi Tan","doi":"10.1039/D4NP00010B","DOIUrl":"10.1039/D4NP00010B","url":null,"abstract":"<p>Covering: up to the end of 2023</p><p>Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly <em>Streptomyces</em> spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical synthesis and functional evaluation of glycopeptides and glycoproteins containing rare glycosyl amino acid linkages 含有稀有糖基氨基酸连接的糖肽和糖蛋白的化学合成和功能评估。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-06-18 DOI: 10.1039/D4NP00017J
Weizhun Yang, Sherif Ramadan, Yan Zu, Mengxia Sun, Xuefei Huang and Biao Yu
{"title":"Chemical synthesis and functional evaluation of glycopeptides and glycoproteins containing rare glycosyl amino acid linkages","authors":"Weizhun Yang, Sherif Ramadan, Yan Zu, Mengxia Sun, Xuefei Huang and Biao Yu","doi":"10.1039/D4NP00017J","DOIUrl":"10.1039/D4NP00017J","url":null,"abstract":"<p>Covering: 1987 to 2023</p><p>Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure–function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the <em>O</em>- and <em>N</em>-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell–cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these “rare” carbohydrate–amino acid linkages between saccharide and canonical amino acid residues and their derivatives.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terpenoids of plants from Chloranthaceae family: chemistry, bioactivity, and synthesis† 绿茶科植物的萜类化合物:化学、生物活性和合成。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-05-29 DOI: 10.1039/D4NP00005F
Bin Zhou and Jian-Min Yue
{"title":"Terpenoids of plants from Chloranthaceae family: chemistry, bioactivity, and synthesis†","authors":"Bin Zhou and Jian-Min Yue","doi":"10.1039/D4NP00005F","DOIUrl":"10.1039/D4NP00005F","url":null,"abstract":"<p>Covering: 1976 to December 2023</p><p>Chloranthaceae is comprised of four extant genera (<em>Chloranthus</em>, <em>Sarcandra</em>, <em>Hedyosmum</em>, and <em>Ascarina</em>), totaling about 80 species, many of which have been widely used as herbal medicines for diverse medical purposes. Chloranthaceae plants represent a rich source of structurally interesting and diverse secondary metabolites, with sesquiterpenoids and diterpenoids being the predominant structural types. Lindenane sesquiterpenoids and their oligomers, chemotaxonomical markers of the family Chloranthaceae, have shown a wide spectrum of bioactivities, attracting significant attention from organic chemists and pharmacologists. Recent achievements also demonstrated the research value of two unique structural types in this plant family, sesquiterpenoid–monoterpenoid heterodimers and meroterpenoids. This review systematically summarizes 682 structurally characterized terpenoids from 22 Chloranthaceae plants and their key biological activities as well as the chemical synthesis of selected terpenoids.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medicinal plant resin natural products: structural diversity and biological activities. 药用植物树脂天然产品:结构多样性和生物活性。
IF 11.9 1区 化学
Natural Product Reports Pub Date : 2024-05-24 DOI: 10.1039/d4np00007b
Madhu Babu Sura, Yong-Xian Cheng
{"title":"Medicinal plant resin natural products: structural diversity and biological activities.","authors":"Madhu Babu Sura, Yong-Xian Cheng","doi":"10.1039/d4np00007b","DOIUrl":"https://doi.org/10.1039/d4np00007b","url":null,"abstract":"<p><p>Covering: up to the mid of 2023Plants secrete defense resins rich in small-molecule natural products under abiotic and biotic stresses. This comprehensive review encompasses the literature published up to mid-2023 on medicinal plant resin natural products from six main contributor genera, featuring 275 citations that refer to 1115 structurally diverse compounds. The scope of this review extends to include essential information such as the racemic nature of metabolites found in different species of plant resins, source of resins, and revised structures. Additionally, we carefully analyze the reported biological activities of resins, organizing them based on the their structures. The findings offer important insights into the relationship between their structure and activity. Furthermore, this detailed examination can be valuable for researchers and scientists in the field of medicinal plant resin natural products and will promote continued exploration and progress in this area.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":11.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial cyclophane-containing RiPPs from radical SAM enzymes 细菌含环烷的RiPPs来自自由基SAM酶。
IF 11.9 1区 化学
Natural Product Reports Pub Date : 2024-05-22 DOI: 10.1039/d3np00030c
Chin-Soon Phan , Brandon I. Morinaka
{"title":"Bacterial cyclophane-containing RiPPs from radical SAM enzymes","authors":"Chin-Soon Phan ,&nbsp;Brandon I. Morinaka","doi":"10.1039/d3np00030c","DOIUrl":"10.1039/d3np00030c","url":null,"abstract":"<div><p>Covering: 2016 to 2023</p></div><div><p>Ribosomally synthesized and posttranslationally modified peptides (RiPPs) continue to be a rich source of chemically diverse and bioactive peptide natural products. In recent years, cyclophane-containing RiPP natural products and their biosynthetic pathways have been more frequently encountered. This highlight will focus on bacterial monoaryl cyclophane-containing RiPPs. This class of RiPPs is produced by radical SAM/SPASM enzymes that form a crosslink between the aromatic ring and sidechain of two amino acid residues of the precursor peptide. Selected natural products from these pathways exhibit specific antibacterial activity against gram-negative pathogens. The approaches used to discover these pathways and products will be described and categorized as natural product-first or enzyme-first. The breadth of ring systems formed by the enzymes, enzyme mechanism, and recent reports of synthetic methods for constructing these ring systems will also be presented. Bacterial cyclophane-containing RiPPs and their biosynthetic enzymes represent an untapped source of scaffolds for drug discovery and tools for synthetic biology.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":11.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138476271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes 十字花科种子和植物的特殊代谢物修饰:多样性、功能和相关酶。
IF 11.9 1区 化学
Natural Product Reports Pub Date : 2024-05-22 DOI: 10.1039/d3np00043e
Léa Barreda , Céline Brosse , Stéphanie Boutet , François Perreau , Loïc Rajjou , Loïc Lepiniec , Massimiliano Corso
{"title":"Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes","authors":"Léa Barreda ,&nbsp;Céline Brosse ,&nbsp;Stéphanie Boutet ,&nbsp;François Perreau ,&nbsp;Loïc Rajjou ,&nbsp;Loïc Lepiniec ,&nbsp;Massimiliano Corso","doi":"10.1039/d3np00043e","DOIUrl":"10.1039/d3np00043e","url":null,"abstract":"<div><p>Covering: up to 2023</p></div><div><p>Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (<em>e.g.</em> hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (<em>Arabidopsis thaliana</em>) and crop (<em>Brassica napus</em>, <em>Camelina sativa</em>) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of <em>A. thaliana</em> genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":11.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vallesamidine and schizozygane alkaloids: rearranged monoterpene indole alkaloids and synthetic endeavours Vallesamidine 和 schizozygane 生物碱:重新排列的单萜吲哚生物碱和合成努力。
IF 11.9 1区 化学
Natural Product Reports Pub Date : 2024-05-22 DOI: 10.1039/d3np00048f
Xiangyu Zhang
{"title":"Vallesamidine and schizozygane alkaloids: rearranged monoterpene indole alkaloids and synthetic endeavours","authors":"Xiangyu Zhang","doi":"10.1039/d3np00048f","DOIUrl":"10.1039/d3np00048f","url":null,"abstract":"<div><p>Covering 1963 to 2023</p></div><div><p>Monoterpene indole alkaloids are the main sub-family of indole alkaloids with fascinating structures, stereochemistry, and diverse bioactivities (<em>e.g.</em>, anticancer, anti-malarial and anti-arrhythmic <em>etc.</em>). Vallesamidine alkaloids and structurally more complex schizozygane alkaloids are small groups of rearranged monoterpene indole alkaloids with a unique 2,2,3-trialkylated indoline scaffold, while schizozygane alkaloids can generate a further rearranged skeleton, isoschizozygane, possessing a tetra-substituted, bridged tetrahydroquinoline core. In this review, the origin and structural features of vallesamidine and schizozygane alkaloids are introduced, and a discussion on the relationship of these alkaloids with aspidosperma alkaloids and a structural rearrangement hypothesis based on published studies is followed. Moreover, uncommon skeletons and potential bioactivities, such as anti-malarial and anti-tumour activities, make such alkaloids important synthetic targets, attracting research groups globally to accomplish total synthesis, resulting in impressive works on novel total synthesis, formal synthesis, and construction of key intermediates. These synthetic endeavours are systematically reviewed and highlighted with key strategies and efficiencies, providing different viewpoints on molecular structures and promoting the extension of chemical space and mining of new active scaffolds.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":11.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Kornblum DeLaMare rearrangement in natural product synthesis: 25 years of innovation 天然产物合成中的 Kornblum DeLaMare 重排:25 年的创新。
IF 11.9 1区 化学
Natural Product Reports Pub Date : 2024-05-22 DOI: 10.1039/d3np00058c
Marc C. Kimber , Darren S. Lee
{"title":"The Kornblum DeLaMare rearrangement in natural product synthesis: 25 years of innovation","authors":"Marc C. Kimber ,&nbsp;Darren S. Lee","doi":"10.1039/d3np00058c","DOIUrl":"10.1039/d3np00058c","url":null,"abstract":"<div><p>Covering: 1998 up to the end of 2023</p></div><div><p>Since its initial disclosure in 1951, the Kornblum DeLaMare rearrangement has proved an important synthetic transformation and has been widely adopted as a biomimetic step in natural product synthesis. Utilising the base catalysed decomposition of alkyl peroxides to yield a ketone and alcohol has found use in many syntheses as well as a key strategic step, including the unmasking of furans, as a biomimetic synthetic tool, and the use of the rearrangement to install oxygen enantioselectively. Since <em>ca.</em> 1998, its impact as a synthetic transformation has grown significantly, especially given the frequency of use in natural product syntheses, therefore this 25 year time period will be the focus of the review.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":11.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139641221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信