Recent advances in drug delivery and formulation最新文献

筛选
英文 中文
Tofacitinib Citrate-loaded Nanoparticle Gel for the Treatment of Alopecia Areata: Response Surface Design, Formulation and In vitro-in Vivo Characterization. 负载柠檬酸托法替尼的纳米凝胶治疗斑秃:响应面设计、配方和体内外表征。
Recent advances in drug delivery and formulation Pub Date : 2023-01-01 DOI: 10.2174/0126673878264814231106094853
Mounika Kuchukuntla, Venkatesan Palanivel, Ananthula Madhubabu
{"title":"Tofacitinib Citrate-loaded Nanoparticle Gel for the Treatment of Alopecia Areata: Response Surface Design, Formulation and <i>In vitro-in Vivo</i> Characterization.","authors":"Mounika Kuchukuntla, Venkatesan Palanivel, Ananthula Madhubabu","doi":"10.2174/0126673878264814231106094853","DOIUrl":"10.2174/0126673878264814231106094853","url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this research was to optimize the design and construction of nanoparticle gel (TFN-NPs) loaded with tofacitinib citrate (TFN) using poly lactic co glycolic acid (PLGA).</p><p><strong>Method: </strong>PLGA (A) as the polymer, polyvinyl alcohol (PVA) (B) as the stabilizer and stirring speed (C) as independent variables were used. TFN-NPs were prepared using single emulsion-solvent evaporation. Box Behnken Design (BBD) was used to determine the optimal component ratio of TFN-NPs based on point prediction.</p><p><strong>Results: </strong>The entrapment efficiency, particle size, and cumulative drug release of the best-composed TFN-NPs were, respectively, 79.82±0.9%, 236.19±5.07 nm, and 82.31±1.23%; the PDI, zeta potential, and drug loading were, respectively, 0.297±0.21, -30.21±0.94mV, and 69.81±0.16%. Gel formulation employing Carbopol as a gelling polymer was then developed using the optimal TFN-NPs mixture. Gel characterization, drug release, permeation studies, irritation, and pharmacokinetic studies were also conducted. Further solid state and morphology were evaluated using FTIR, DSC, XRD, SEM, TEM, and AFM on the developed topical gel formulation (TFN-NPG) and TFN-NPs. The release and permeation investigations indicated that TFN was slowly released (38.42±2.87%) and had significantly enhanced penetration into the epidermal membrane of mice. The cumulative irritation score of 0.33 determined during testing suggested little discomfort. The generated nanogels are stable and have a high drug penetration profile over the skin, as shown by the findings. When compared to both pure TFN solutions, TFN-NPs and TFN-NPG demonstrated superior pharmacokinetic properties.</p><p><strong>Conclusion: </strong>Based on the results, the NPs and NPG formulations were depicted to enhance the activity of TFN compared to the free drug solution. TFN could be a safe and effective treatment for Alopecia areata. The tofacitinib citrate NPG could be a clinically translatable, safer topical formulation for managing Alopecia areata.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"314-331"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138465362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoemulsion-Based Strategy for Maximizing Nitrofurantoin Absorption: In-vitro and In-vivo Investigations. 基于纳米乳液的呋喃妥因最大吸收策略:体外和体内研究。
Recent advances in drug delivery and formulation Pub Date : 2023-01-01 DOI: 10.2174/0126673878259374230921045432
Gouri Prasad Nanda, Mrunali Patel, Rashmin Patel
{"title":"Nanoemulsion-Based Strategy for Maximizing Nitrofurantoin Absorption: <i>In-vitro</i> and <i>In-vivo</i> Investigations.","authors":"Gouri Prasad Nanda, Mrunali Patel, Rashmin Patel","doi":"10.2174/0126673878259374230921045432","DOIUrl":"10.2174/0126673878259374230921045432","url":null,"abstract":"<p><strong>Background: </strong>The main objective of the current research work is to improve the absorption of Nitrofurantoin (NFT) by minimizing gastrointestinal (GI) intolerance and variations in its absorption by formulating the drug into a nanoemulsion (NE).</p><p><strong>Method: </strong>Based on the highest saturation solubility of NFT, soybean oil, transcutol HP, and labrafil M1944CS were selected as oil, co-surfactant, and surfactant, and a S<sub>mix</sub> ratio of 1:2 was selected based on pseudoternary phase diagrams. The formulation prepared with an equal ratio of oil and S<sub>mix</sub> exhibited the lowest globule size, highest zeta potential, and higher drug release and hence was selected for further evaluation.</p><p><strong>Result: </strong>Optimized formulation (NF5) showed improved membrane permeability against pure drug suspension (2.30 times) and marketed suspension formulation (1.43 times). NF5 exhibited similar % cell viability and % cell toxicity in Caco-2 cell lines compared to the marketed suspension. The relative bioavailability of NFT-NE was enhanced by 1.10 and 1.17 times compared to the marketed and pure drug suspension, respectively.</p><p><strong>Conclusion: </strong>Thus, it can be concluded that the optimized nanoemulsion formulation of NFT exhibited improved membrane permeability, comparable cell viability, and increased relative bioavailability. These findings suggest the potential of the nanoemulsion approach as a strategy to overcome the variability of oral absorption and GI intolerance of NFT.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"241-253"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Concise Review of Carbon Dots and their Pharmaceutical and Biomedical Applications. 碳点及其药物和生物医学应用简评。
Recent advances in drug delivery and formulation Pub Date : 2023-01-01 DOI: 10.2174/0126673878237423230919070049
Ashish Kumar Parashar, Krishna Kumar Verma, Rajeev Kumar, Vandana Arora
{"title":"A Concise Review of Carbon Dots and their Pharmaceutical and Biomedical Applications.","authors":"Ashish Kumar Parashar, Krishna Kumar Verma, Rajeev Kumar, Vandana Arora","doi":"10.2174/0126673878237423230919070049","DOIUrl":"10.2174/0126673878237423230919070049","url":null,"abstract":"<p><p>For the last two decades, carbon dots, a revolutionary type of carbon nanomaterial with less than 10 nm diameter, have attracted considerable research interest. CDs exhibit various physicochemical properties and favorable characteristics, including excellent water solubility, unique optical properties, low cost, eco-friendliness, an abundance of reactive surface groups, and high stability. As a result, the synthesis of CDs and their applications in pharmaceutical and related disciplines have received increasing interest. Since CDs are biocompatible and biodegradable with low toxicity, they are a promising healthcare tool. CDs are extensively employed for numerous applications to date, including theranostics, bioimaging, drug delivery, biosensing, gene delivery, cancer therapy, electrochemical biosensing, and inflammatory treatment. This comprehensive review aims to explore various synthesis methods of carbon dots, including top-down and bottom-up approaches, as well as highlight the characterization techniques employed to assess their physicochemical and biological properties. Additionally, the review delves into carbon dots' pharmaceutical and biomedical applications, showcasing their potential in drug delivery, bioimaging, diagnostics, and therapeutics.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"183-192"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信