Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献
{"title":"Dynamic Functional Connectome Harmonics.","authors":"Hoyt Patrick Taylor, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_26","DOIUrl":"10.1007/978-3-031-43993-3_26","url":null,"abstract":"<p><p>Functional connectivity (FC) \"gradients\" enable investigation of connection topography in relation to cognitive hierarchy, and yield the primary axes along which FC is organized. In this work, we employ a variant of the \"gradient\" approach wherein we solve for the normal modes of FC, yielding functional connectome harmonics. Until now, research in this vein has only considered static FC, neglecting the possibility that the principal axes of FC may depend on the timescale at which they are computed. Recent work suggests that momentary activation patterns, or brain states, mediate the dominant components of functional connectivity, suggesting that the principal axes may be invariant to change in timescale. In light of this, we compute functional connectome harmonics using time windows of varying lengths and demonstrate that they are stable across timescales. Our connectome harmonics correspond to meaningful brain states. The activation strength of the brain states, as well as their inter-relationships, are found to be reproducible for individuals. Further, we utilize our time-varying functional connectome harmonics to formulate a simple and elegant method for computing cortical flexibility at vertex resolution and demonstrate qualitative similarity between flexibility maps from our method and a method standard in the literature.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"268-276"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SurfFlow: A Flow-Based Approach for Rapid and Accurate Cortical Surface Reconstruction from Infant Brain MRI.","authors":"Xiaoyang Chen, Junjie Zhao, Siyuan Liu, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_37","DOIUrl":"10.1007/978-3-031-43993-3_37","url":null,"abstract":"<p><p>The infant brain undergoes rapid changes in volume, shape, and structural organization during the first postnatal year. Accurate cortical surface reconstruction (CSR) is essential for understanding rapid changes in cortical morphometry during early brain development. However, existing CSR methods, designed for adult brain MRI, fall short in reconstructing cortical surfaces from infant MRI, owing to the poor tissue contrasts, partial volume effects, and rapid changes in cortical folding patterns. Here, we introduce an infant-centric CSR method in light of these challenges. Our method, <i>SurfFlow</i>, utilizes three seamlessly connected deformation blocks to sequentially deform an initial template mesh to target cortical surfaces. Remarkably, our method can rapidly reconstruct a high-resolution cortical surface mesh with 360k vertices in approximately one second. Performance evaluation based on an MRI dataset of infants 0 to 12 months of age indicates that SurfFlow significantly reduces geometric errors and substantially improves mesh regularity compared with state-of-the-art deep learning approaches.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"380-388"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LSOR: Longitudinally-Consistent Self-Organized Representation Learning.","authors":"Jiahong Ouyang, Qingyu Zhao, Ehsan Adeli, Wei Peng, Greg Zaharchuk, Kilian M Pohl","doi":"10.1007/978-3-031-43907-0_27","DOIUrl":"10.1007/978-3-031-43907-0_27","url":null,"abstract":"<p><p>Interpretability is a key issue when applying deep learning models to longitudinal brain MRIs. One way to address this issue is by visualizing the high-dimensional latent spaces generated by deep learning via self-organizing maps (SOM). SOM separates the latent space into clusters and then maps the cluster centers to a discrete (typically 2D) grid preserving the high-dimensional relationship between clusters. However, learning SOM in a high-dimensional latent space tends to be unstable, especially in a self-supervision setting. Furthermore, the learned SOM grid does not necessarily capture clinically interesting information, such as brain age. To resolve these issues, we propose the first self-supervised SOM approach that derives a high-dimensional, interpretable representation stratified by brain age solely based on longitudinal brain MRIs (i.e., without demographic or cognitive information). Called <b>L</b>ongitudinally-consistent <b>S</b>elf-<b>O</b>rganized <b>R</b>epresentation learning (LSOR), the method is stable during training as it relies on soft clustering (vs. the hard cluster assignments used by existing SOM). Furthermore, our approach generates a latent space stratified according to brain age by aligning trajectories inferred from longitudinal MRIs to the reference vector associated with the corresponding SOM cluster. When applied to longitudinal MRIs of the Alzheimer's Disease Neuroimaging Initiative (ADNI, <math><mi>N</mi><mspace></mspace><mo>=</mo><mspace></mspace><mn>632</mn></math>), LSOR generates an interpretable latent space and achieves comparable or higher accuracy than the state-of-the-art representations with respect to the downstream tasks of classification (static vs. progressive mild cognitive impairment) and regression (determining ADAS-Cog score of all subjects). The code is available at https://github.com/ouyangjiahong/longitudinal-som-single-modality.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"279-289"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92158078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin D Killeen, Han Zhang, Jan Mangulabnan, Mehran Armand, Russell H Taylor, Greg Osgood, Mathias Unberath
{"title":"Pelphix: Surgical Phase Recognition from X-ray Images in Percutaneous Pelvic Fixation.","authors":"Benjamin D Killeen, Han Zhang, Jan Mangulabnan, Mehran Armand, Russell H Taylor, Greg Osgood, Mathias Unberath","doi":"10.1007/978-3-031-43996-4_13","DOIUrl":"https://doi.org/10.1007/978-3-031-43996-4_13","url":null,"abstract":"<p><p>Surgical phase recognition (SPR) is a crucial element in the digital transformation of the modern operating theater. While SPR based on video sources is well-established, incorporation of interventional X-ray sequences has not yet been explored. This paper presents Pelphix, a first approach to SPR for X-ray-guided percutaneous pelvic fracture fixation, which models the procedure at four levels of granularity - corridor, activity, view, and frame value - simulating the pelvic fracture fixation workflow as a Markov process to provide fully annotated training data. Using added supervision from detection of bony corridors, tools, and anatomy, we learn image representations that are fed into a transformer model to regress surgical phases at the four granularity levels. Our approach demonstrates the feasibility of X-ray-based SPR, achieving an average accuracy of 99.2% on simulated sequences and 71.7% in cadaver across all granularity levels, with up to 84% accuracy for the target corridor in real data. This work constitutes the first step toward SPR for the X-ray domain, establishing an approach to categorizing phases in X-ray-guided surgery, simulating realistic image sequences to enable machine learning model development, and demonstrating that this approach is feasible for the analysis of real procedures. As X-ray-based SPR continues to mature, it will benefit procedures in orthopedic surgery, angiography, and interventional radiology by equipping intelligent surgical systems with situational awareness in the operating room.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14228 ","pages":"133-143"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CTFlow: Mitigating Effects of Computed Tomography Acquisition and Reconstruction with Normalizing Flows.","authors":"Leihao Wei, Anil Yadav, William Hsu","doi":"10.1007/978-3-031-43990-2_39","DOIUrl":"10.1007/978-3-031-43990-2_39","url":null,"abstract":"<p><p>Mitigating the effects of image appearance due to variations in computed tomography (CT) acquisition and reconstruction parameters is a challenging inverse problem. We present CTFlow, a normalizing flows-based method for harmonizing CT scans acquired and reconstructed using different doses and kernels to a target scan. Unlike existing state-of-the-art image harmonization approaches that only generate a single output, flow-based methods learn the explicit conditional density and output the entire spectrum of plausible reconstruction, reflecting the underlying uncertainty of the problem. We demonstrate how normalizing flows reduces variability in image quality and the performance of a machine learning algorithm for lung nodule detection. We evaluate the performance of CTFlow by 1) comparing it with other techniques on a denoising task using the AAPM-Mayo Clinical Low-Dose CT Grand Challenge dataset, and 2) demonstrating consistency in nodule detection performance across 186 real-world low-dose CT chest scans acquired at our institution. CTFlow performs better in the denoising task for both peak signal-to-noise ratio and perceptual quality metrics. Moreover, CTFlow produces more consistent predictions across all dose and kernel conditions than generative adversarial network (GAN)-based image harmonization on a lung nodule detection task. The code is available at https://github.com/hsu-lab/ctflow.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14226 ","pages":"413-422"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenyu You, Weicheng Dai, Yifei Min, Lawrence Staib, James S Duncan
{"title":"Implicit Anatomical Rendering for Medical Image Segmentation with Stochastic Experts.","authors":"Chenyu You, Weicheng Dai, Yifei Min, Lawrence Staib, James S Duncan","doi":"10.1007/978-3-031-43898-1_54","DOIUrl":"10.1007/978-3-031-43898-1_54","url":null,"abstract":"<p><p>Integrating high-level semantically correlated contents and low-level anatomical features is of central importance in medical image segmentation. Towards this end, recent deep learning-based medical segmentation methods have shown great promise in better modeling such information. However, convolution operators for medical segmentation typically operate on regular grids, which inherently blur the high-frequency regions, <i>i.e</i>., boundary regions. In this work, we propose MORSE, a generic implicit neural rendering framework designed at an anatomical level to assist learning in medical image segmentation. Our method is motivated by the fact that implicit neural representation has been shown to be more effective in fitting complex signals and solving computer graphics problems than discrete grid-based representation. The core of our approach is to formulate medical image segmentation as a rendering problem in an end-to-end manner. Specifically, we continuously align the coarse segmentation prediction with the ambiguous coordinate-based point representations and aggregate these features to adaptively refine the boundary region. To parallelly optimize multi-scale pixel-level features, we leverage the idea from Mixture-of-Expert (MoE) to design and train our MORSE with a stochastic gating mechanism. Our experiments demonstrate that MORSE can work well with different medical segmentation backbones, consistently achieving competitive performance improvements in both 2D and 3D supervised medical segmentation methods. We also theoretically analyze the superiority of MORSE.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14222 ","pages":"561-571"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amine Amyar, Shiro Nakamori, Manuel Morales, Siyeop Yoon, Jennifer Rodriguez, Jiwon Kim, Robert M Judd, Jonathan W Weinsaft, Reza Nezafat
{"title":"Gadolinium-Free Cardiac MRI Myocardial Scar Detection by 4D Convolution Factorization.","authors":"Amine Amyar, Shiro Nakamori, Manuel Morales, Siyeop Yoon, Jennifer Rodriguez, Jiwon Kim, Robert M Judd, Jonathan W Weinsaft, Reza Nezafat","doi":"10.1007/978-3-031-43895-0_60","DOIUrl":"10.1007/978-3-031-43895-0_60","url":null,"abstract":"<p><p>Gadolinium-based contrast agents are commonly used in cardiac magnetic resonance (CMR) imaging to characterize myocardial scar tissue. Recent works using deep learning have shown the promise of contrast-free short-axis cine images to detect scars based on wall motion abnormalities (WMA) in ischemic patients. However, WMA can occur in patients without a scar. Moreover, the presence of a scar may not always be accompanied by WMA, particularly in non-ischemic heart disease, posing a significant challenge in detecting scars in such cases. To overcome this limitation, we propose a novel deep spatiotemporal residual attention network (ST-RAN) that leverages temporal and spatial information at different scales to detect scars in both ischemic and non-ischemic heart diseases. Our model comprises three primary components. First, we develop a novel factorized 4D (3D+time) convolutional layer that extracts 3D spatial features of the heart and a deep 1D kernel in the temporal direction to extract heart motion. Secondly, we enhance the power of the 4D (3D+time) layer with spatiotemporal attention to extract rich whole-heart features while tracking the long-range temporal relationship between the frames. Lastly, we introduce a residual attention block that extracts spatial and temporal features at different scales to obtain global and local motion features and to detect subtle changes in contrast related to scar. We train and validate our model on a large dataset of 3000 patients who underwent clinical CMR with various indications and different field strengths (1.5T, 3T) from multiple vendors (GE, Siemens) to demonstrate the generalizability and robustness of our model. We show that our model works on both ischemic and non-ischemic heart diseases outperforming state-of-the-art methods. Our code is available at https://github.com/HMS-CardiacMR/Myocardial_Scar_Detection.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"639-648"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Image2SSM: Reimagining Statistical Shape Models from Images with Radial Basis Functions.","authors":"Hong Xu, Shireen Y Elhabian","doi":"10.1007/978-3-031-43907-0_49","DOIUrl":"10.1007/978-3-031-43907-0_49","url":null,"abstract":"<p><p>Statistical shape modeling (SSM) is an essential tool for analyzing variations in anatomical morphology. In a typical SSM pipeline, 3D anatomical images, gone through segmentation and rigid registration, are represented using lower-dimensional shape features, on which statistical analysis can be performed. Various methods for constructing compact shape representations have been proposed, but they involve laborious and costly steps. We propose Image2SSM, a novel deep-learning-based approach for SSM that leverages image-segmentation pairs to learn a radial-basis-function (RBF)-based representation of shapes directly from images. This RBF-based shape representation offers a rich self-supervised signal for the network to estimate a continuous, yet compact representation of the underlying surface that can adapt to complex geometries in a data-driven manner. Image2SSM can characterize populations of biological structures of interest by constructing statistical landmark-based shape models of ensembles of anatomical shapes while requiring minimal parameter tuning and no user assistance. Once trained, Image2SSM can be used to infer low-dimensional shape representations from new unsegmented images, paving the way toward scalable approaches for SSM, especially when dealing with large cohorts. Experiments on synthetic and real datasets show the efficacy of the proposed method compared to the state-of-art correspondence-based method for SSM.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"508-517"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Can point cloud networks learn statistical shape models of anatomies?","authors":"Jadie Adams, Shireen Elhabian","doi":"10.1007/978-3-031-43907-0_47","DOIUrl":"10.1007/978-3-031-43907-0_47","url":null,"abstract":"<p><p>Statistical Shape Modeling (SSM) is a valuable tool for investigating and quantifying anatomical variations within populations of anatomies. However, traditional correspondence-based SSM generation methods have a prohibitive inference process and require complete geometric proxies (e.g., high-resolution binary volumes or surface meshes) as input shapes to construct the SSM. Unordered 3D point cloud representations of shapes are more easily acquired from various medical imaging practices (e.g., thresholded images and surface scanning). Point cloud deep networks have recently achieved remarkable success in learning permutation-invariant features for different point cloud tasks (e.g., completion, semantic segmentation, classification). However, their application to learning SSM from point clouds is to-date unexplored. In this work, we demonstrate that existing point cloud encoder-decoder-based completion networks can provide an untapped potential for SSM, capturing population-level statistical representations of shapes while reducing the inference burden and relaxing the input requirement. We discuss the limitations of these techniques to the SSM application and suggest future improvements. Our work paves the way for further exploration of point cloud deep learning for SSM, a promising avenue for advancing shape analysis literature and broadening SSM to diverse use cases.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"486-496"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fully Bayesian VIB-DeepSSM.","authors":"Jadie Adams, Shireen Y Elhabian","doi":"10.1007/978-3-031-43898-1_34","DOIUrl":"10.1007/978-3-031-43898-1_34","url":null,"abstract":"<p><p>Statistical shape modeling (SSM) enables population-based quantitative analysis of anatomical shapes, informing clinical diagnosis. Deep learning approaches predict correspondence-based SSM directly from unsegmented 3D images but require calibrated uncertainty quantification, motivating Bayesian formulations. Variational information bottleneck DeepSSM (VIB-DeepSSM) is an effective, principled framework for predicting probabilistic shapes of anatomy from images with aleatoric uncertainty quantification. However, VIB is only half-Bayesian and lacks epistemic uncertainty inference. We derive a fully Bayesian VIB formulation and demonstrate the efficacy of two scalable implementation approaches: concrete dropout and batch ensemble. Additionally, we introduce a novel combination of the two that further enhances uncertainty calibration via multimodal marginalization. Experiments on synthetic shapes and left atrium data demonstrate that the fully Bayesian VIB network predicts SSM from images with improved uncertainty reasoning without sacrificing accuracy.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14222 ","pages":"346-356"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}