Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献
Thomas Z Li, John M Still, Kaiwen Xu, Ho Hin Lee, Leon Y Cai, Aravind R Krishnan, Riqiang Gao, Mirza S Khan, Sanja Antic, Michael Kammer, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Thomas A Lasko
{"title":"Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification.","authors":"Thomas Z Li, John M Still, Kaiwen Xu, Ho Hin Lee, Leon Y Cai, Aravind R Krishnan, Riqiang Gao, Mirza S Khan, Sanja Antic, Michael Kammer, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Thomas A Lasko","doi":"10.1007/978-3-031-43895-0_61","DOIUrl":"10.1007/978-3-031-43895-0_61","url":null,"abstract":"<p><p>The accuracy of predictive models for solitary pulmonary nodule (SPN) diagnosis can be greatly increased by incorporating repeat imaging and medical context, such as electronic health records (EHRs). However, clinically routine modalities such as imaging and diagnostic codes can be asynchronous and irregularly sampled over different time scales which are obstacles to longitudinal multimodal learning. In this work, we propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from routinely collected EHRs for SPN classification. We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans. Our classifier is pretrained on 2,668 scans from a public dataset and 1,149 subjects with longitudinal chest CTs, billing codes, medications, and laboratory tests from EHRs of our home institution. Evaluation on 227 subjects with challenging SPNs revealed a significant AUC improvement over a longitudinal multimodal baseline (0.824 vs 0.752 AUC), as well as improvements over a single cross-section multimodal scenario (0.809 AUC) and a longitudinal imaging-only scenario (0.741 AUC). This work demonstrates significant advantages with a novel approach for co-learning longitudinal imaging and non-imaging phenotypes with transformers. Code available at https://github.com/MASILab/lmsignatures.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"649-659"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lintao Zhang, Jinjian Wu, Lihong Wang, Li Wang, David C Steffens, Shijun Qiu, Guy G Potter, Mingxia Liu
{"title":"Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI.","authors":"Lintao Zhang, Jinjian Wu, Lihong Wang, Li Wang, David C Steffens, Shijun Qiu, Guy G Potter, Mingxia Liu","doi":"10.1007/978-3-031-43993-3_11","DOIUrl":"10.1007/978-3-031-43993-3_11","url":null,"abstract":"<p><p>Brain structural MRI has been widely used for assessing future progression of cognitive impairment (CI) based on learning-based methods. Previous studies generally suffer from the limited number of labeled training data, while there exists a huge amount of MRIs in large-scale public databases. Even without task-specific label information, brain anatomical structures provided by these MRIs can be used to boost learning performance intuitively. Unfortunately, existing research seldom takes advantage of such brain anatomy prior. To this end, this paper proposes a brain anatomy-guided representation (BAR) learning framework for assessing the clinical progression of cognitive impairment with T1-weighted MRIs. The BAR consists of a <i>pretext model</i> and a <i>downstream model</i>, with a shared brain anatomy-guided encoder for MRI feature extraction. The pretext model also contains a decoder for brain tissue segmentation, while the downstream model relies on a predictor for classification. We first train the pretext model through a brain tissue segmentation task on 9,544 auxiliary T1-weighted MRIs, yielding a generalizable encoder. The downstream model with the learned encoder is further fine-tuned on target MRIs for prediction tasks. We validate the proposed BAR on two CI-related studies with a total of 391 subjects with T1-weighted MRIs. Experimental results suggest that the BAR outperforms several state-of-the-art (SOTA) methods. The source code and pre-trained models are available at https://github.com/goodaycoder/BAR.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"109-119"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flow-based Geometric Interpolation of Fiber Orientation Distribution Functions.","authors":"Xinyu Nie, Yonggang Shi","doi":"10.1007/978-3-031-43993-3_5","DOIUrl":"10.1007/978-3-031-43993-3_5","url":null,"abstract":"<p><p>The fiber orientation distribution function (FOD) is an advanced model for high angular resolution diffusion MRI representing complex fiber geometry. However, the complicated mathematical structures of the FOD function pose challenges for FOD image processing tasks such as interpolation, which plays a critical role in the propagation of fiber tracts in tractography. In FOD-based tractography, linear interpolation is commonly used for numerical efficiency, but it is prone to generate false artificial information, leading to anatomically incorrect fiber tracts. To overcome this difficulty, we propose a flowbased and geometrically consistent interpolation framework that considers peak-wise rotations of FODs within the neighborhood of each location. Our method decomposes a FOD function into multiple components and uses a smooth vector field to model the flows of each peak in its neighborhood. To generate the interpolated result along the flow of each vector field, we develop a closed-form and efficient method to rotate FOD peaks in neighboring voxels and realize geometrically consistent interpolation of FOD components. By combining the interpolation results from each peak, we obtain the final interpolation of FODs. Experimental results on Human Connectome Project (HCP) data demonstrate that our method produces anatomically more meaningful FOD interpolations and significantly enhances tractography performance.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"46-55"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DongAo Ma, Jiaxuan Pang, Michael B Gotway, Jianming Liang
{"title":"Foundation Ark: Accruing and Reusing Knowledge for Superior and Robust Performance.","authors":"DongAo Ma, Jiaxuan Pang, Michael B Gotway, Jianming Liang","doi":"10.1007/978-3-031-43907-0_62","DOIUrl":"10.1007/978-3-031-43907-0_62","url":null,"abstract":"<p><p>Deep learning nowadays offers expert-level and sometimes even super-expert-level performance, but achieving such performance demands massive annotated data for training (e.g., Google's <i>proprietary</i> CXR Foundation Model (CXR-FM) was trained on 821,544 <i>labeled</i> and mostly <i>private</i> chest X-rays (CXRs)). <i>Numerous</i> datasets are <i>publicly</i> available in medical imaging but individually <i>small</i> and <i>heterogeneous</i> in expert labels. We envision a powerful and robust foundation model that can be trained by aggregating numerous small public datasets. To realize this vision, we have developed <b>Ark</b>, a framework that <b>a</b>ccrues and <b>r</b>euses <b>k</b>nowledge from <b>heterogeneous</b> expert annotations in various datasets. As a proof of concept, we have trained two Ark models on 335,484 and 704,363 CXRs, respectively, by merging several datasets including ChestX-ray14, CheXpert, MIMIC-II, and VinDr-CXR, evaluated them on a wide range of imaging tasks covering both classification and segmentation via fine-tuning, linear-probing, and gender-bias analysis, and demonstrated our Ark's superior and robust performance over the state-of-the-art (SOTA) fully/self-supervised baselines and Google's proprietary CXR-FM. This enhanced performance is attributed to our simple yet powerful observation that aggregating numerous public datasets diversifies patient populations and accrues knowledge from diverse experts, yielding unprecedented performance yet saving annotation cost. With all codes and pretrained models released at GitHub.com/JLiangLab/Ark, we hope that Ark exerts an important impact on open science, as accruing and reusing knowledge from expert annotations in public datasets can potentially surpass the performance of proprietary models trained on unusually large data, inspiring many more researchers worldwide to share codes and datasets to build open foundation models, accelerate open science, and democratize deep learning for medical imaging.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"651-662"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Favour Nerrise, Qingyu Zhao, Kathleen L Poston, Kilian M Pohl, Ehsan Adeli
{"title":"An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment.","authors":"Favour Nerrise, Qingyu Zhao, Kathleen L Poston, Kilian M Pohl, Ehsan Adeli","doi":"10.1007/978-3-031-43895-0_68","DOIUrl":"10.1007/978-3-031-43895-0_68","url":null,"abstract":"<p><p>One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (<b>xGW-GAT</b>) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. <b>xGW-GAT</b> predicts the multi-class gait impairment on the MDS-Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, <b>xGW-GAT</b> identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically-relevant connectivity patterns. The source code is available at https://github.com/favour-nerrise/xGW-GAT.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"723-733"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138049118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards Accurate Microstructure Estimation via 3D Hybrid Graph Transformer.","authors":"Junqing Yang, Haotian Jiang, Tewodros Tassew, Peng Sun, Jiquan Ma, Yong Xia, Pew-Thian Yap, Geng Chen","doi":"10.1007/978-3-031-43993-3_3","DOIUrl":"10.1007/978-3-031-43993-3_3","url":null,"abstract":"<p><p>Deep learning has drawn increasing attention in microstructure estimation with undersampled diffusion MRI (dMRI) data. A representative method is the hybrid graph transformer (HGT), which achieves promising performance by integrating <math><mi>q</mi></math> -space graph learning and <math><mi>x</mi></math> -space transformer learning into a unified framework. However, this method overlooks the 3D spatial information as it relies on training with 2D slices. To address this limitation, we propose 3D hybrid graph transformer (3D-HGT), an advanced microstructure estimation model capable of making full use of 3D spatial information and angular information. To tackle the large computation burden associated with 3D <math><mi>x</mi></math> -space learning, we propose an efficient <math><mi>q</mi></math> -space learning model based on simplified graph neural networks. Furthermore, we propose a 3D <math><mi>x</mi></math> -space learning module based on the transformer. Extensive experiments on data from the human connectome project show that our 3D-HGT outperforms state-of-the-art methods, including HGT, in both quantitative and qualitative evaluations.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"25-34"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic Functional Connectome Harmonics.","authors":"Hoyt Patrick Taylor, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_26","DOIUrl":"10.1007/978-3-031-43993-3_26","url":null,"abstract":"<p><p>Functional connectivity (FC) \"gradients\" enable investigation of connection topography in relation to cognitive hierarchy, and yield the primary axes along which FC is organized. In this work, we employ a variant of the \"gradient\" approach wherein we solve for the normal modes of FC, yielding functional connectome harmonics. Until now, research in this vein has only considered static FC, neglecting the possibility that the principal axes of FC may depend on the timescale at which they are computed. Recent work suggests that momentary activation patterns, or brain states, mediate the dominant components of functional connectivity, suggesting that the principal axes may be invariant to change in timescale. In light of this, we compute functional connectome harmonics using time windows of varying lengths and demonstrate that they are stable across timescales. Our connectome harmonics correspond to meaningful brain states. The activation strength of the brain states, as well as their inter-relationships, are found to be reproducible for individuals. Further, we utilize our time-varying functional connectome harmonics to formulate a simple and elegant method for computing cortical flexibility at vertex resolution and demonstrate qualitative similarity between flexibility maps from our method and a method standard in the literature.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"268-276"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SurfFlow: A Flow-Based Approach for Rapid and Accurate Cortical Surface Reconstruction from Infant Brain MRI.","authors":"Xiaoyang Chen, Junjie Zhao, Siyuan Liu, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_37","DOIUrl":"10.1007/978-3-031-43993-3_37","url":null,"abstract":"<p><p>The infant brain undergoes rapid changes in volume, shape, and structural organization during the first postnatal year. Accurate cortical surface reconstruction (CSR) is essential for understanding rapid changes in cortical morphometry during early brain development. However, existing CSR methods, designed for adult brain MRI, fall short in reconstructing cortical surfaces from infant MRI, owing to the poor tissue contrasts, partial volume effects, and rapid changes in cortical folding patterns. Here, we introduce an infant-centric CSR method in light of these challenges. Our method, <i>SurfFlow</i>, utilizes three seamlessly connected deformation blocks to sequentially deform an initial template mesh to target cortical surfaces. Remarkably, our method can rapidly reconstruct a high-resolution cortical surface mesh with 360k vertices in approximately one second. Performance evaluation based on an MRI dataset of infants 0 to 12 months of age indicates that SurfFlow significantly reduces geometric errors and substantially improves mesh regularity compared with state-of-the-art deep learning approaches.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"380-388"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin D Killeen, Han Zhang, Jan Mangulabnan, Mehran Armand, Russell H Taylor, Greg Osgood, Mathias Unberath
{"title":"Pelphix: Surgical Phase Recognition from X-ray Images in Percutaneous Pelvic Fixation.","authors":"Benjamin D Killeen, Han Zhang, Jan Mangulabnan, Mehran Armand, Russell H Taylor, Greg Osgood, Mathias Unberath","doi":"10.1007/978-3-031-43996-4_13","DOIUrl":"https://doi.org/10.1007/978-3-031-43996-4_13","url":null,"abstract":"<p><p>Surgical phase recognition (SPR) is a crucial element in the digital transformation of the modern operating theater. While SPR based on video sources is well-established, incorporation of interventional X-ray sequences has not yet been explored. This paper presents Pelphix, a first approach to SPR for X-ray-guided percutaneous pelvic fracture fixation, which models the procedure at four levels of granularity - corridor, activity, view, and frame value - simulating the pelvic fracture fixation workflow as a Markov process to provide fully annotated training data. Using added supervision from detection of bony corridors, tools, and anatomy, we learn image representations that are fed into a transformer model to regress surgical phases at the four granularity levels. Our approach demonstrates the feasibility of X-ray-based SPR, achieving an average accuracy of 99.2% on simulated sequences and 71.7% in cadaver across all granularity levels, with up to 84% accuracy for the target corridor in real data. This work constitutes the first step toward SPR for the X-ray domain, establishing an approach to categorizing phases in X-ray-guided surgery, simulating realistic image sequences to enable machine learning model development, and demonstrating that this approach is feasible for the analysis of real procedures. As X-ray-based SPR continues to mature, it will benefit procedures in orthopedic surgery, angiography, and interventional radiology by equipping intelligent surgical systems with situational awareness in the operating room.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14228 ","pages":"133-143"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CTFlow: Mitigating Effects of Computed Tomography Acquisition and Reconstruction with Normalizing Flows.","authors":"Leihao Wei, Anil Yadav, William Hsu","doi":"10.1007/978-3-031-43990-2_39","DOIUrl":"10.1007/978-3-031-43990-2_39","url":null,"abstract":"<p><p>Mitigating the effects of image appearance due to variations in computed tomography (CT) acquisition and reconstruction parameters is a challenging inverse problem. We present CTFlow, a normalizing flows-based method for harmonizing CT scans acquired and reconstructed using different doses and kernels to a target scan. Unlike existing state-of-the-art image harmonization approaches that only generate a single output, flow-based methods learn the explicit conditional density and output the entire spectrum of plausible reconstruction, reflecting the underlying uncertainty of the problem. We demonstrate how normalizing flows reduces variability in image quality and the performance of a machine learning algorithm for lung nodule detection. We evaluate the performance of CTFlow by 1) comparing it with other techniques on a denoising task using the AAPM-Mayo Clinical Low-Dose CT Grand Challenge dataset, and 2) demonstrating consistency in nodule detection performance across 186 real-world low-dose CT chest scans acquired at our institution. CTFlow performs better in the denoising task for both peak signal-to-noise ratio and perceptual quality metrics. Moreover, CTFlow produces more consistent predictions across all dose and kernel conditions than generative adversarial network (GAN)-based image harmonization on a lung nodule detection task. The code is available at https://github.com/hsu-lab/ctflow.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14226 ","pages":"413-422"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}