Pelphix: Surgical Phase Recognition from X-ray Images in Percutaneous Pelvic Fixation.

Benjamin D Killeen, Han Zhang, Jan Mangulabnan, Mehran Armand, Russell H Taylor, Greg Osgood, Mathias Unberath
{"title":"Pelphix: Surgical Phase Recognition from X-ray Images in Percutaneous Pelvic Fixation.","authors":"Benjamin D Killeen, Han Zhang, Jan Mangulabnan, Mehran Armand, Russell H Taylor, Greg Osgood, Mathias Unberath","doi":"10.1007/978-3-031-43996-4_13","DOIUrl":null,"url":null,"abstract":"<p><p>Surgical phase recognition (SPR) is a crucial element in the digital transformation of the modern operating theater. While SPR based on video sources is well-established, incorporation of interventional X-ray sequences has not yet been explored. This paper presents Pelphix, a first approach to SPR for X-ray-guided percutaneous pelvic fracture fixation, which models the procedure at four levels of granularity - corridor, activity, view, and frame value - simulating the pelvic fracture fixation workflow as a Markov process to provide fully annotated training data. Using added supervision from detection of bony corridors, tools, and anatomy, we learn image representations that are fed into a transformer model to regress surgical phases at the four granularity levels. Our approach demonstrates the feasibility of X-ray-based SPR, achieving an average accuracy of 99.2% on simulated sequences and 71.7% in cadaver across all granularity levels, with up to 84% accuracy for the target corridor in real data. This work constitutes the first step toward SPR for the X-ray domain, establishing an approach to categorizing phases in X-ray-guided surgery, simulating realistic image sequences to enable machine learning model development, and demonstrating that this approach is feasible for the analysis of real procedures. As X-ray-based SPR continues to mature, it will benefit procedures in orthopedic surgery, angiography, and interventional radiology by equipping intelligent surgical systems with situational awareness in the operating room.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14228 ","pages":"133-143"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016332/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43996-4_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surgical phase recognition (SPR) is a crucial element in the digital transformation of the modern operating theater. While SPR based on video sources is well-established, incorporation of interventional X-ray sequences has not yet been explored. This paper presents Pelphix, a first approach to SPR for X-ray-guided percutaneous pelvic fracture fixation, which models the procedure at four levels of granularity - corridor, activity, view, and frame value - simulating the pelvic fracture fixation workflow as a Markov process to provide fully annotated training data. Using added supervision from detection of bony corridors, tools, and anatomy, we learn image representations that are fed into a transformer model to regress surgical phases at the four granularity levels. Our approach demonstrates the feasibility of X-ray-based SPR, achieving an average accuracy of 99.2% on simulated sequences and 71.7% in cadaver across all granularity levels, with up to 84% accuracy for the target corridor in real data. This work constitutes the first step toward SPR for the X-ray domain, establishing an approach to categorizing phases in X-ray-guided surgery, simulating realistic image sequences to enable machine learning model development, and demonstrating that this approach is feasible for the analysis of real procedures. As X-ray-based SPR continues to mature, it will benefit procedures in orthopedic surgery, angiography, and interventional radiology by equipping intelligent surgical systems with situational awareness in the operating room.

Pelphix:从 X 光图像识别经皮骨盆固定术中的手术期。
手术相位识别(SPR)是现代手术室数字化转型的关键因素。虽然基于视频源的 SPR 已经得到广泛认可,但将介入性 X 射线序列纳入其中的做法尚未得到探索。本文介绍了 Pelphix,这是第一种用于 X 光引导下经皮骨盆骨折固定的 SPR 方法,它从走廊、活动、视图和帧值四个粒度层面对手术过程进行建模,将骨盆骨折固定工作流程模拟为马尔可夫过程,从而提供完全注释的训练数据。通过对骨走廊、工具和解剖结构的检测,我们学习了图像表征,并将其输入变换器模型,从而在四个粒度水平上对手术阶段进行回归。我们的方法证明了基于 X 射线的 SPR 的可行性,在所有粒度水平上,模拟序列的平均准确率达到 99.2%,在尸体中达到 71.7%,在真实数据中,目标走廊的准确率高达 84%。这项工作迈出了 X 射线领域 SPR 的第一步,建立了 X 射线引导手术中阶段分类的方法,模拟了真实的图像序列以实现机器学习模型的开发,并证明了这种方法在真实手术分析中的可行性。随着基于 X 射线的 SPR 技术的不断成熟,它将通过为智能手术系统配备手术室中的态势感知功能,使骨科手术、血管造影术和介入放射学手术受益匪浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信