{"title":"SurfFlow: A Flow-Based Approach for Rapid and Accurate Cortical Surface Reconstruction from Infant Brain MRI.","authors":"Xiaoyang Chen, Junjie Zhao, Siyuan Liu, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_37","DOIUrl":null,"url":null,"abstract":"<p><p>The infant brain undergoes rapid changes in volume, shape, and structural organization during the first postnatal year. Accurate cortical surface reconstruction (CSR) is essential for understanding rapid changes in cortical morphometry during early brain development. However, existing CSR methods, designed for adult brain MRI, fall short in reconstructing cortical surfaces from infant MRI, owing to the poor tissue contrasts, partial volume effects, and rapid changes in cortical folding patterns. Here, we introduce an infant-centric CSR method in light of these challenges. Our method, <i>SurfFlow</i>, utilizes three seamlessly connected deformation blocks to sequentially deform an initial template mesh to target cortical surfaces. Remarkably, our method can rapidly reconstruct a high-resolution cortical surface mesh with 360k vertices in approximately one second. Performance evaluation based on an MRI dataset of infants 0 to 12 months of age indicates that SurfFlow significantly reduces geometric errors and substantially improves mesh regularity compared with state-of-the-art deep learning approaches.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"380-388"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43993-3_37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The infant brain undergoes rapid changes in volume, shape, and structural organization during the first postnatal year. Accurate cortical surface reconstruction (CSR) is essential for understanding rapid changes in cortical morphometry during early brain development. However, existing CSR methods, designed for adult brain MRI, fall short in reconstructing cortical surfaces from infant MRI, owing to the poor tissue contrasts, partial volume effects, and rapid changes in cortical folding patterns. Here, we introduce an infant-centric CSR method in light of these challenges. Our method, SurfFlow, utilizes three seamlessly connected deformation blocks to sequentially deform an initial template mesh to target cortical surfaces. Remarkably, our method can rapidly reconstruct a high-resolution cortical surface mesh with 360k vertices in approximately one second. Performance evaluation based on an MRI dataset of infants 0 to 12 months of age indicates that SurfFlow significantly reduces geometric errors and substantially improves mesh regularity compared with state-of-the-art deep learning approaches.