{"title":"动态功能连接组谐波。","authors":"Hoyt Patrick Taylor, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_26","DOIUrl":null,"url":null,"abstract":"<p><p>Functional connectivity (FC) \"gradients\" enable investigation of connection topography in relation to cognitive hierarchy, and yield the primary axes along which FC is organized. In this work, we employ a variant of the \"gradient\" approach wherein we solve for the normal modes of FC, yielding functional connectome harmonics. Until now, research in this vein has only considered static FC, neglecting the possibility that the principal axes of FC may depend on the timescale at which they are computed. Recent work suggests that momentary activation patterns, or brain states, mediate the dominant components of functional connectivity, suggesting that the principal axes may be invariant to change in timescale. In light of this, we compute functional connectome harmonics using time windows of varying lengths and demonstrate that they are stable across timescales. Our connectome harmonics correspond to meaningful brain states. The activation strength of the brain states, as well as their inter-relationships, are found to be reproducible for individuals. Further, we utilize our time-varying functional connectome harmonics to formulate a simple and elegant method for computing cortical flexibility at vertex resolution and demonstrate qualitative similarity between flexibility maps from our method and a method standard in the literature.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"268-276"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460769/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic Functional Connectome Harmonics.\",\"authors\":\"Hoyt Patrick Taylor, Pew-Thian Yap\",\"doi\":\"10.1007/978-3-031-43993-3_26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional connectivity (FC) \\\"gradients\\\" enable investigation of connection topography in relation to cognitive hierarchy, and yield the primary axes along which FC is organized. In this work, we employ a variant of the \\\"gradient\\\" approach wherein we solve for the normal modes of FC, yielding functional connectome harmonics. Until now, research in this vein has only considered static FC, neglecting the possibility that the principal axes of FC may depend on the timescale at which they are computed. Recent work suggests that momentary activation patterns, or brain states, mediate the dominant components of functional connectivity, suggesting that the principal axes may be invariant to change in timescale. In light of this, we compute functional connectome harmonics using time windows of varying lengths and demonstrate that they are stable across timescales. Our connectome harmonics correspond to meaningful brain states. The activation strength of the brain states, as well as their inter-relationships, are found to be reproducible for individuals. Further, we utilize our time-varying functional connectome harmonics to formulate a simple and elegant method for computing cortical flexibility at vertex resolution and demonstrate qualitative similarity between flexibility maps from our method and a method standard in the literature.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"14227 \",\"pages\":\"268-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460769/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43993-3_26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43993-3_26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functional connectivity (FC) "gradients" enable investigation of connection topography in relation to cognitive hierarchy, and yield the primary axes along which FC is organized. In this work, we employ a variant of the "gradient" approach wherein we solve for the normal modes of FC, yielding functional connectome harmonics. Until now, research in this vein has only considered static FC, neglecting the possibility that the principal axes of FC may depend on the timescale at which they are computed. Recent work suggests that momentary activation patterns, or brain states, mediate the dominant components of functional connectivity, suggesting that the principal axes may be invariant to change in timescale. In light of this, we compute functional connectome harmonics using time windows of varying lengths and demonstrate that they are stable across timescales. Our connectome harmonics correspond to meaningful brain states. The activation strength of the brain states, as well as their inter-relationships, are found to be reproducible for individuals. Further, we utilize our time-varying functional connectome harmonics to formulate a simple and elegant method for computing cortical flexibility at vertex resolution and demonstrate qualitative similarity between flexibility maps from our method and a method standard in the literature.