An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment.

Favour Nerrise, Qingyu Zhao, Kathleen L Poston, Kilian M Pohl, Ehsan Adeli
{"title":"An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment.","authors":"Favour Nerrise, Qingyu Zhao, Kathleen L Poston, Kilian M Pohl, Ehsan Adeli","doi":"10.1007/978-3-031-43895-0_68","DOIUrl":null,"url":null,"abstract":"<p><p>One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (<b>xGW-GAT</b>) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. <b>xGW-GAT</b> predicts the multi-class gait impairment on the MDS-Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, <b>xGW-GAT</b> identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically-relevant connectivity patterns. The source code is available at https://github.com/favour-nerrise/xGW-GAT.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657737/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43895-0_68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (xGW-GAT) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. xGW-GAT predicts the multi-class gait impairment on the MDS-Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, xGW-GAT identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically-relevant connectivity patterns. The source code is available at https://github.com/favour-nerrise/xGW-GAT.

一个可解释的几何加权图注意网络识别与步态障碍相关的功能网络。
帕金森病(PD)的标志性症状之一是姿势反射的逐渐丧失,最终导致步态困难和平衡问题。识别与步态障碍相关的脑功能中断对于更好地了解PD运动进展至关重要,从而促进更有效和个性化治疗的发展。在这项工作中,我们提出了一个可解释的、几何的、加权图的注意神经网络(xGW-GAT)来识别预测PD患者步态困难进展的功能网络。xGW-GAT预测mds -统一PD评定量表(MDS-UPDRS)的多等级步态障碍。我们的计算和数据效率模型将功能连接体表示为黎曼流形上的对称正定(SPD)矩阵,以显式编码整个连接体的成对相互作用,在此基础上,我们学习了一个产生个人和群体级别可解释性的注意掩模。xGW-GAT应用于PD患者的静息状态功能MRI (rs-fMRI)数据集,确定了PD患者与步态障碍相关的功能连接模式,并提供了与运动障碍相关的功能子网络的可解释性解释。我们的模型成功地超越了几种现有的方法,同时揭示了临床相关的连接模式。源代码可从https://github.com/favour-nerrise/xGW-GAT获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信