Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献

筛选
英文 中文
Fast Reconstruction for Deep Learning PET Head Motion Correction. 深度学习 PET 头部运动校正的快速重建。
Tianyi Zeng, Jiazhen Zhang, Eléonore V Lieffrig, Zhuotong Cai, Fuyao Chen, Chenyu You, Mika Naganawa, Yihuan Lu, John A Onofrey
{"title":"Fast Reconstruction for Deep Learning PET Head Motion Correction.","authors":"Tianyi Zeng, Jiazhen Zhang, Eléonore V Lieffrig, Zhuotong Cai, Fuyao Chen, Chenyu You, Mika Naganawa, Yihuan Lu, John A Onofrey","doi":"10.1007/978-3-031-43999-5_67","DOIUrl":"10.1007/978-3-031-43999-5_67","url":null,"abstract":"<p><p>Head motion correction is an essential component of brain PET imaging, in which even motion of small magnitude can greatly degrade image quality and introduce artifacts. Building upon previous work, we propose a new head motion correction framework taking fast reconstructions as input. The main characteristics of the proposed method are: (i) the adoption of a high-resolution short-frame fast reconstruction workflow; (ii) the development of a novel encoder for PET data representation extraction; and (iii) the implementation of data augmentation techniques. Ablation studies are conducted to assess the individual contributions of each of these design choices. Furthermore, multi-subject studies are conducted on an <sup>18</sup>F-FPEB dataset, and the method performance is qualitatively and quantitatively evaluated by MOLAR reconstruction study and corresponding brain Region of Interest (ROI) Standard Uptake Values (SUV) evaluation. Additionally, we also compared our method with a conventional intensity-based registration method. Our results demonstrate that the proposed method outperforms other methods on all subjects, and can accurately estimate motion for subjects out of the training set. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_fast_recon_miccai2023.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14229 ","pages":"710-719"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Unified Deep-Learning-Based Framework for Cochlear Implant Electrode Array Localization. 基于深度学习的人工耳蜗植入电极阵列定位统一框架。
Yubo Fan, Jianing Wang, Yiyuan Zhao, Rui Li, Han Liu, Robert F Labadie, Jack H Noble, Benoit M Dawant
{"title":"A Unified Deep-Learning-Based Framework for Cochlear Implant Electrode Array Localization.","authors":"Yubo Fan, Jianing Wang, Yiyuan Zhao, Rui Li, Han Liu, Robert F Labadie, Jack H Noble, Benoit M Dawant","doi":"10.1007/978-3-031-43996-4_36","DOIUrl":"10.1007/978-3-031-43996-4_36","url":null,"abstract":"<p><p>Cochlear implants (CIs) are neuroprosthetics that can provide a sense of sound to people with severe-to-profound hearing loss. A CI contains an electrode array (EA) that is threaded into the cochlea during surgery. Recent studies have shown that hearing outcomes are correlated with EA placement. An image-guided cochlear implant programming technique is based on this correlation and utilizes the EA location with respect to the intracochlear anatomy to help audiologists adjust the CI settings to improve hearing. Automated methods to localize EA in postoperative CT images are of great interest for large-scale studies and for translation into the clinical workflow. In this work, we propose a unified deep-learning-based framework for automated EA localization. It consists of a multi-task network and a series of postprocessing algorithms to localize various types of EAs. The evaluation on a dataset with 27 cadaveric samples shows that its localization error is slightly smaller than the state-of-the-art method. Another evaluation on a large-scale clinical dataset containing 561 cases across two institutions demonstrates a significant improvement in robustness compared to the state-of-the-art method. This suggests that this technique could be integrated into the clinical workflow and provide audiologists with information that facilitates the programming of the implant leading to improved patient care.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14228 ","pages":"376-385"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DeepSOZ: A Robust Deep Model for Joint Temporal and Spatial Seizure Onset Localization from Multichannel EEG Data. DeepSOZ:从多通道脑电图数据进行癫痫发作时间和空间联合定位的鲁棒深度模型。
Deeksha M Shama, Jiasen Jing, Archana Venkataraman
{"title":"DeepSOZ: A Robust Deep Model for Joint Temporal and Spatial Seizure Onset Localization from Multichannel EEG Data.","authors":"Deeksha M Shama, Jiasen Jing, Archana Venkataraman","doi":"10.1007/978-3-031-43993-3_18","DOIUrl":"https://doi.org/10.1007/978-3-031-43993-3_18","url":null,"abstract":"<p><p>We propose a robust deep learning framework to simultaneously detect and localize seizure activity from multichannel scalp EEG. Our model, called DeepSOZ, consists of a transformer encoder to generate global and channel-wise encodings. The global branch is combined with an LSTM for temporal seizure detection. In parallel, we employ attention-weighted multi-instance pooling of channel-wise encodings to predict the seizure onset zone. DeepSOZ is trained in a supervised fashion and generates high-resolution predictions on the order of each second (temporal) and EEG channel (spatial). We validate DeepSOZ via bootstrapped nested cross-validation on a large dataset of 120 patients curated from the Temple University Hospital corpus. As compared to baseline approaches, DeepSOZ provides robust overall performance in our multi-task learning setup. We also evaluate the intra-seizure and intra-patient consistency of DeepSOZ as a first step to establishing its trustworthiness for integration into the clinical workflow for epilepsy.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"2023 ","pages":"184-194"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Democratizing Pathological Image Segmentation with Lay Annotators via Molecular-empowered Learning. 通过分子赋能学习,利用非专业注释器实现病理图像分割的民主化。
Ruining Deng, Yanwei Li, Peize Li, Jiacheng Wang, Lucas W Remedios, Saydolimkhon Agzamkhodjaev, Zuhayr Asad, Quan Liu, Can Cui, Yaohong Wang, Yihan Wang, Yucheng Tang, Haichun Yang, Yuankai Huo
{"title":"Democratizing Pathological Image Segmentation with Lay Annotators via Molecular-empowered Learning.","authors":"Ruining Deng, Yanwei Li, Peize Li, Jiacheng Wang, Lucas W Remedios, Saydolimkhon Agzamkhodjaev, Zuhayr Asad, Quan Liu, Can Cui, Yaohong Wang, Yihan Wang, Yucheng Tang, Haichun Yang, Yuankai Huo","doi":"10.1007/978-3-031-43987-2_48","DOIUrl":"10.1007/978-3-031-43987-2_48","url":null,"abstract":"<p><p>Multi-class cell segmentation in high-resolution Giga-pixel whole slide images (WSI) is critical for various clinical applications. Training such an AI model typically requires labor-intensive pixel-wise manual annotation from experienced domain experts (e.g., pathologists). Moreover, such annotation is error-prone when differentiating fine-grained cell types (e.g., podocyte and mesangial cells) via the naked human eye. In this study, we assess the feasibility of democratizing pathological AI deployment by only using lay annotators (annotators without medical domain knowledge). The contribution of this paper is threefold: (1) We proposed a molecular-empowered learning scheme for multi-class cell segmentation using partial labels from lay annotators; (2) The proposed method integrated Giga-pixel level molecular-morphology cross-modality registration, molecular-informed annotation, and molecular-oriented segmentation model, so as to achieve significantly superior performance via 3 lay annotators as compared with 2 experienced pathologists; (3) A deep corrective learning (learning with imperfect label) method is proposed to further improve the segmentation performance using partially annotated noisy data. From the experimental results, our learning method achieved F1 = 0.8496 using molecular-informed annotations from lay annotators, which is better than conventional morphology-based annotations (F1 = 0.7015) from experienced pathologists. Our method democratizes the development of a pathological segmentation deep model to the lay annotator level, which consequently scales up the learning process similar to a non-medical computer vision task. The official implementation and cell annotations are publicly available at https://github.com/hrlblab/MolecularEL.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14225 ","pages":"497-507"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140290108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-Informed Neural Networks for Tissue Elasticity Reconstruction in Magnetic Resonance Elastography. 用于磁共振弹性成像中组织弹性重构的物理信息神经网络
Matthew Ragoza, Kayhan Batmanghelich
{"title":"Physics-Informed Neural Networks for Tissue Elasticity Reconstruction in Magnetic Resonance Elastography.","authors":"Matthew Ragoza, Kayhan Batmanghelich","doi":"10.1007/978-3-031-43999-5_32","DOIUrl":"10.1007/978-3-031-43999-5_32","url":null,"abstract":"<p><p>Magnetic resonance elastography (MRE) is a medical imaging modality that non-invasively quantifies tissue stiffness (elasticity) and is commonly used for diagnosing liver fibrosis. Constructing an elasticity map of tissue requires solving an inverse problem involving a partial differential equation (PDE). Current numerical techniques to solve the inverse problem are noise-sensitive and require explicit specification of physical relationships. In this work, we apply physics-informed neural networks to solve the inverse problem of tissue elasticity reconstruction. Our method does not rely on numerical differentiation and can be extended to learn relevant correlations from anatomical images while respecting physical constraints. We evaluate our approach on simulated data and <i>in vivo</i> data from a cohort of patients with non-alcoholic fatty liver disease (NAFLD). Compared to numerical baselines, our method is more robust to noise and more accurate on realistic data, and its performance is further enhanced by incorporating anatomical information.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14229 ","pages":"333-343"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape-Aware 3D Small Vessel Segmentation with Local Contrast Guided Attention. 利用局部对比度引导的注意力进行形状感知三维小血管分割
Zhiwei Deng, Songnan Xu, Jianwei Zhang, Jiong Zhang, Danny J Wang, Lirong Yan, Yonggang Shi
{"title":"Shape-Aware 3D Small Vessel Segmentation with Local Contrast Guided Attention.","authors":"Zhiwei Deng, Songnan Xu, Jianwei Zhang, Jiong Zhang, Danny J Wang, Lirong Yan, Yonggang Shi","doi":"10.1007/978-3-031-43901-8_34","DOIUrl":"10.1007/978-3-031-43901-8_34","url":null,"abstract":"<p><p>The automated segmentation and analysis of small vessels from <i>in vivo</i> imaging data is an important task for many clinical applications. While current filtering and learning methods have achieved good performance on the segmentation of large vessels, they are sub-optimal for small vessel detection due to their apparent geometric irregularity and weak contrast given the relatively limited resolution of existing imaging techniques. In addition, for supervised learning approaches, the acquisition of accurate pixel-wise annotations in these small vascular regions heavily relies on skilled experts. In this work, we propose a novel self-supervised network to tackle these challenges and improve the detection of small vessels from 3D imaging data. First, our network maximizes a novel shape-aware flux-based measure to enhance the estimation of small vasculature with non-circular and irregular appearances. Then, we develop novel local contrast guided attention(LCA) and enhancement(LCE) modules to boost the vesselness responses of vascular regions of low contrast. In our experiments, we compare with four filtering-based methods and a state-of-the-art self-supervised deep learning method in multiple 3D datasets to demonstrate that our method achieves significant improvement in all datasets. Further analysis and ablation studies have also been performed to assess the contributions of various modules to the improved performance in 3D small vessel segmentation. Our code is available at https://github.com/dengchihwei/LCNetVesselSeg.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14223 ","pages":"354-363"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture. 用于探测组织微结构的松弛-扩散谱成像技术
Ye Wu, Xiaoming Liu, Xinyuan Zhang, Khoi Minh Huynh, Sahar Ahmad, Pew-Thian Yap
{"title":"Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture.","authors":"Ye Wu, Xiaoming Liu, Xinyuan Zhang, Khoi Minh Huynh, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_15","DOIUrl":"10.1007/978-3-031-43993-3_15","url":null,"abstract":"<p><p>Brain tissue microarchitecture is characterized by heterogeneous degrees of diffusivity and rates of transverse relaxation. Unlike standard diffusion MRI with a single echo time (TE), which provides information primarily on diffusivity, relaxation-diffusion MRI involves multiple TEs and multiple diffusion-weighting strengths for probing tissue-specific coupling between relaxation and diffusivity. Here, we introduce a relaxation-diffusion model that characterizes tissue apparent relaxation coefficients for a spectrum of diffusion length scales and at the same time factors out the effects of intra-voxel orientation heterogeneity. We examined the model with an in vivo dataset, acquired using a clinical scanner, involving different health conditions. Experimental results indicate that our model caters to heterogeneous tissue microstructure and can distinguish fiber bundles with similar diffusivities but different relaxation rates. Code with sample data is available at https://github.com/dryewu/RDSI.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"152-162"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distilling BlackBox to Interpretable Models for Efficient Transfer Learning. 将黑盒子提炼为可解释的模型,以实现高效的迁移学习。
Shantanu Ghosh, Ke Yu, Kayhan Batmanghelich
{"title":"Distilling BlackBox to Interpretable Models for Efficient Transfer Learning.","authors":"Shantanu Ghosh, Ke Yu, Kayhan Batmanghelich","doi":"10.1007/978-3-031-43895-0_59","DOIUrl":"10.1007/978-3-031-43895-0_59","url":null,"abstract":"<p><p>Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (<i>e.g</i>., scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a <i>mixture</i> of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"628-638"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Automatic Placenta Analysis through Distributional Feature Recomposition in Vision-Language Contrastive Learning. 通过视觉语言对比学习中的分布特征重组增强胎盘自动分析能力
Yimu Pan, Tongan Cai, Manas Mehta, Alison D Gernand, Jeffery A Goldstein, Leena Mithal, Delia Mwinyelle, Kelly Gallagher, James Z Wang
{"title":"Enhancing Automatic Placenta Analysis through Distributional Feature Recomposition in Vision-Language Contrastive Learning.","authors":"Yimu Pan, Tongan Cai, Manas Mehta, Alison D Gernand, Jeffery A Goldstein, Leena Mithal, Delia Mwinyelle, Kelly Gallagher, James Z Wang","doi":"10.1007/978-3-031-43987-2_12","DOIUrl":"10.1007/978-3-031-43987-2_12","url":null,"abstract":"<p><p>The placenta is a valuable organ that can aid in understanding adverse events during pregnancy and predicting issues post-birth. Manual pathological examination and report generation, however, are laborious and resource-intensive. Limitations in diagnostic accuracy and model efficiency have impeded previous attempts to automate placenta analysis. This study presents a novel framework for the automatic analysis of placenta images that aims to improve accuracy and efficiency. Building on previous vision-language contrastive learning (VLC) methods, we propose two enhancements, namely Pathology Report Feature Recomposition and Distributional Feature Recomposition, which increase representation robustness and mitigate feature suppression. In addition, we employ efficient neural networks as image encoders to achieve model compression and inference acceleration. Experiments validate that the proposed approach outperforms prior work in both performance and efficiency by significant margins. The benefits of our method, including enhanced efficacy and deployability, may have significant implications for reproductive healthcare, particularly in rural areas or low- and middle-income countries.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14225 ","pages":"116-126"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modularity-Constrained Dynamic Representation Learning for Interpretable Brain Disorder Analysis with Functional MRI. 利用功能性核磁共振成像进行可解释的大脑障碍分析的模块化约束动态表征学习
Qianqian Wang, Mengqi Wu, Yuqi Fang, Wei Wang, Lishan Qiao, Mingxia Liu
{"title":"Modularity-Constrained Dynamic Representation Learning for Interpretable Brain Disorder Analysis with Functional MRI.","authors":"Qianqian Wang, Mengqi Wu, Yuqi Fang, Wei Wang, Lishan Qiao, Mingxia Liu","doi":"10.1007/978-3-031-43907-0_5","DOIUrl":"10.1007/978-3-031-43907-0_5","url":null,"abstract":"<p><p>Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (<i>i.e.</i>, central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"46-56"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信