Weakly Supervised Cerebellar Cortical Surface Parcellation with Self-Visual Representation Learning.

Zhengwang Wu, Jiale Cheng, Fenqiang Zhao, Ya Wang, Yue Sun, Dajiang Zhu, Tianming Liu, Valerie Jewells, Weili Lin, Li Wang, Gang Li
{"title":"Weakly Supervised Cerebellar Cortical Surface Parcellation with Self-Visual Representation Learning.","authors":"Zhengwang Wu, Jiale Cheng, Fenqiang Zhao, Ya Wang, Yue Sun, Dajiang Zhu, Tianming Liu, Valerie Jewells, Weili Lin, Li Wang, Gang Li","doi":"10.1007/978-3-031-43993-3_42","DOIUrl":null,"url":null,"abstract":"<p><p>The cerebellum (i.e., little brain) plays an important role in motion and balances control abilities, despite its much smaller size and deeper sulci compared to the cerebrum. Previous cerebellum studies mainly relied on and focused on conventional volumetric analysis, which ignores the extremely deep and highly convoluted nature of the cerebellar cortex. To better reveal localized functional and structural changes, we propose cortical surface-based analysis of the cerebellar cortex. Specifically, we first reconstruct the cerebellar cortical surfaces to represent and characterize the highly folded cerebellar cortex in a geometrically accurate and topologically correct manner. Then, we propose a novel method to automatically parcellate the cerebellar cortical surface into anatomically meaningful regions by a weakly supervised graph convolutional neural network. Instead of relying on registration or requiring mapping the cerebellar surface to a sphere, which are either inaccurate or have large geometric distortions due to the deep cerebellar sulci, our learning-based model directly deals with the original cerebellar cortical surface by decomposing this challenging task into two steps. First, we learn the effective representation of the cerebellar cortical surface patches with a contrastive self-learning framework. Then, we map the learned representations to parcellation labels. We have validated our method using data from the Baby Connectome Project and the experimental results demonstrate its superior effectiveness and accuracy, compared to existing methods.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"429-438"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030008/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43993-3_42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cerebellum (i.e., little brain) plays an important role in motion and balances control abilities, despite its much smaller size and deeper sulci compared to the cerebrum. Previous cerebellum studies mainly relied on and focused on conventional volumetric analysis, which ignores the extremely deep and highly convoluted nature of the cerebellar cortex. To better reveal localized functional and structural changes, we propose cortical surface-based analysis of the cerebellar cortex. Specifically, we first reconstruct the cerebellar cortical surfaces to represent and characterize the highly folded cerebellar cortex in a geometrically accurate and topologically correct manner. Then, we propose a novel method to automatically parcellate the cerebellar cortical surface into anatomically meaningful regions by a weakly supervised graph convolutional neural network. Instead of relying on registration or requiring mapping the cerebellar surface to a sphere, which are either inaccurate or have large geometric distortions due to the deep cerebellar sulci, our learning-based model directly deals with the original cerebellar cortical surface by decomposing this challenging task into two steps. First, we learn the effective representation of the cerebellar cortical surface patches with a contrastive self-learning framework. Then, we map the learned representations to parcellation labels. We have validated our method using data from the Baby Connectome Project and the experimental results demonstrate its superior effectiveness and accuracy, compared to existing methods.

自我视觉表征学习的弱监督小脑皮质表面包裹化。
小脑(即小脑)在运动和平衡控制能力方面起着重要作用,尽管它的体积比大脑小得多,脑沟也深得多。以往的小脑研究主要依赖于传统的体积分析,忽视了小脑皮层极其深层和高度复杂的本质。为了更好地揭示局部功能和结构变化,我们提出了基于皮质表面的小脑皮层分析。具体来说,我们首先重建小脑皮层表面,以几何精确和拓扑正确的方式表示和表征高度折叠的小脑皮层。然后,我们提出了一种利用弱监督图卷积神经网络将小脑皮层表面自动分割成解剖意义区域的新方法。我们的基于学习的模型将这一具有挑战性的任务分解为两个步骤,直接处理原始的小脑皮质表面,而不是依赖于配位或需要将小脑表面映射到球体上,这要么是不准确的,要么是由于小脑沟深而产生巨大的几何扭曲。首先,我们用对比自学习框架学习了小脑皮层表面斑块的有效表征。然后,我们将学习到的表示映射到包装标签。我们使用婴儿连接体项目的数据验证了我们的方法,实验结果表明,与现有方法相比,它具有更高的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信