基于深度学习的人工耳蜗植入电极阵列定位统一框架。

Yubo Fan, Jianing Wang, Yiyuan Zhao, Rui Li, Han Liu, Robert F Labadie, Jack H Noble, Benoit M Dawant
{"title":"基于深度学习的人工耳蜗植入电极阵列定位统一框架。","authors":"Yubo Fan, Jianing Wang, Yiyuan Zhao, Rui Li, Han Liu, Robert F Labadie, Jack H Noble, Benoit M Dawant","doi":"10.1007/978-3-031-43996-4_36","DOIUrl":null,"url":null,"abstract":"<p><p>Cochlear implants (CIs) are neuroprosthetics that can provide a sense of sound to people with severe-to-profound hearing loss. A CI contains an electrode array (EA) that is threaded into the cochlea during surgery. Recent studies have shown that hearing outcomes are correlated with EA placement. An image-guided cochlear implant programming technique is based on this correlation and utilizes the EA location with respect to the intracochlear anatomy to help audiologists adjust the CI settings to improve hearing. Automated methods to localize EA in postoperative CT images are of great interest for large-scale studies and for translation into the clinical workflow. In this work, we propose a unified deep-learning-based framework for automated EA localization. It consists of a multi-task network and a series of postprocessing algorithms to localize various types of EAs. The evaluation on a dataset with 27 cadaveric samples shows that its localization error is slightly smaller than the state-of-the-art method. Another evaluation on a large-scale clinical dataset containing 561 cases across two institutions demonstrates a significant improvement in robustness compared to the state-of-the-art method. This suggests that this technique could be integrated into the clinical workflow and provide audiologists with information that facilitates the programming of the implant leading to improved patient care.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14228 ","pages":"376-385"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976972/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Unified Deep-Learning-Based Framework for Cochlear Implant Electrode Array Localization.\",\"authors\":\"Yubo Fan, Jianing Wang, Yiyuan Zhao, Rui Li, Han Liu, Robert F Labadie, Jack H Noble, Benoit M Dawant\",\"doi\":\"10.1007/978-3-031-43996-4_36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cochlear implants (CIs) are neuroprosthetics that can provide a sense of sound to people with severe-to-profound hearing loss. A CI contains an electrode array (EA) that is threaded into the cochlea during surgery. Recent studies have shown that hearing outcomes are correlated with EA placement. An image-guided cochlear implant programming technique is based on this correlation and utilizes the EA location with respect to the intracochlear anatomy to help audiologists adjust the CI settings to improve hearing. Automated methods to localize EA in postoperative CT images are of great interest for large-scale studies and for translation into the clinical workflow. In this work, we propose a unified deep-learning-based framework for automated EA localization. It consists of a multi-task network and a series of postprocessing algorithms to localize various types of EAs. The evaluation on a dataset with 27 cadaveric samples shows that its localization error is slightly smaller than the state-of-the-art method. Another evaluation on a large-scale clinical dataset containing 561 cases across two institutions demonstrates a significant improvement in robustness compared to the state-of-the-art method. This suggests that this technique could be integrated into the clinical workflow and provide audiologists with information that facilitates the programming of the implant leading to improved patient care.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"14228 \",\"pages\":\"376-385\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976972/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43996-4_36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43996-4_36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工耳蜗(CI)是一种神经义肢,可以为重度到永久性听力损失患者提供声音感知。CI 包含一个电极阵列 (EA),在手术中被穿入耳蜗。最近的研究表明,听力效果与电极阵列的位置有关。图像引导人工耳蜗植入编程技术就是基于这种相关性,并利用 EA 位置与耳蜗内解剖结构的关系,帮助听力学家调整 CI 设置以改善听力。在术后 CT 图像中定位 EA 的自动化方法对于大规模研究和转化为临床工作流程具有重大意义。在这项工作中,我们提出了一种基于深度学习的统一框架,用于自动 EA 定位。它由一个多任务网络和一系列后处理算法组成,用于定位各种类型的 EA。在一个包含 27 个尸体样本的数据集上进行的评估表明,其定位误差略小于最先进的方法。另一项评估是在一个大规模临床数据集上进行的,该数据集包含两个机构的 561 个病例,结果表明与最先进的方法相比,该方法的鲁棒性有了显著提高。这表明这项技术可以整合到临床工作流程中,为听力学家提供有助于植入程序设计的信息,从而改善患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Deep-Learning-Based Framework for Cochlear Implant Electrode Array Localization.

Cochlear implants (CIs) are neuroprosthetics that can provide a sense of sound to people with severe-to-profound hearing loss. A CI contains an electrode array (EA) that is threaded into the cochlea during surgery. Recent studies have shown that hearing outcomes are correlated with EA placement. An image-guided cochlear implant programming technique is based on this correlation and utilizes the EA location with respect to the intracochlear anatomy to help audiologists adjust the CI settings to improve hearing. Automated methods to localize EA in postoperative CT images are of great interest for large-scale studies and for translation into the clinical workflow. In this work, we propose a unified deep-learning-based framework for automated EA localization. It consists of a multi-task network and a series of postprocessing algorithms to localize various types of EAs. The evaluation on a dataset with 27 cadaveric samples shows that its localization error is slightly smaller than the state-of-the-art method. Another evaluation on a large-scale clinical dataset containing 561 cases across two institutions demonstrates a significant improvement in robustness compared to the state-of-the-art method. This suggests that this technique could be integrated into the clinical workflow and provide audiologists with information that facilitates the programming of the implant leading to improved patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信