{"title":"Enhancing Whole Slide Image Classification with Discriminative and Contrastive Learning.","authors":"Peixian Liang, Hao Zheng, Hongming Li, Yuxin Gong, Spyridon Bakas, Yong Fan","doi":"10.1007/978-3-031-72083-3_10","DOIUrl":null,"url":null,"abstract":"<p><p>Whole slide image (WSI) classification plays a crucial role in digital pathology data analysis. However, the immense size of WSIs and the absence of fine-grained sub-region labels pose significant challenges for accurate WSI classification. Typical classification-driven deep learning methods often struggle to generate informative image representations, which can compromise the robustness of WSI classification. In this study, we address this challenge by incorporating both discriminative and contrastive learning techniques for WSI classification. Different from the existing contrastive learning methods for WSI classification that primarily rely on pseudo labels assigned to patches based on the WSI-level labels, our approach takes a different route to directly focus on constructing positive and negative samples at the WSI-level. Specifically, we select a subset of representative image patches to represent WSIs and create positive and negative samples at the WSI-level, facilitating effective learning of informative image features. Experimental results on two datasets and ablation studies have demonstrated that our method significantly improved the WSI classification performance compared to state-of-the-art deep learning methods and enabled learning of informative features that promoted robustness of the WSI classification.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15004 ","pages":"102-112"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877581/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-72083-3_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Whole slide image (WSI) classification plays a crucial role in digital pathology data analysis. However, the immense size of WSIs and the absence of fine-grained sub-region labels pose significant challenges for accurate WSI classification. Typical classification-driven deep learning methods often struggle to generate informative image representations, which can compromise the robustness of WSI classification. In this study, we address this challenge by incorporating both discriminative and contrastive learning techniques for WSI classification. Different from the existing contrastive learning methods for WSI classification that primarily rely on pseudo labels assigned to patches based on the WSI-level labels, our approach takes a different route to directly focus on constructing positive and negative samples at the WSI-level. Specifically, we select a subset of representative image patches to represent WSIs and create positive and negative samples at the WSI-level, facilitating effective learning of informative image features. Experimental results on two datasets and ablation studies have demonstrated that our method significantly improved the WSI classification performance compared to state-of-the-art deep learning methods and enabled learning of informative features that promoted robustness of the WSI classification.