{"title":"Epithelial endothelial transition and endothelial mesenchymal transition.","authors":"D. Ribatti","doi":"10.1387/ijdb.210234dr","DOIUrl":"https://doi.org/10.1387/ijdb.210234dr","url":null,"abstract":"The movement of continuous sheets of epithelial cells occurs during embryonic development, tissue repair, and cancer. Common to cellular and molecular principles of collective cell migration, invading cancers seem to reactivate embryonic pathways and patterns of cell movement. Epithelial cells possess the capability to become mesenchymal cells in a process called epithelial mesenchymal transition (EMT), which has been extensively studied and described. The aim of this article is to summarizes the most recent literature data concerning less known epithelial-endothelial transition and endothelial-mesenchymal transition.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76497210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Konstantopoulos, Alexandros Dimiropoulos, N. Zagris
{"title":"Hyaluronan receptor CD44: developmentally regulated expression and role in the early chick embryo.","authors":"K. Konstantopoulos, Alexandros Dimiropoulos, N. Zagris","doi":"10.1387/ijdb.220008nz","DOIUrl":"https://doi.org/10.1387/ijdb.220008nz","url":null,"abstract":"CD44 is a membrane glycoprotein and is the main receptor for hyaluronan. We studied the CD44 expression and spatio-temporal distribution by RT-PCR and immunofluorescence, and used an anti-CD44 blocking antibody to perturb CD44-depended signalling programs in the early chick embryo. The intense CD44 levels we detected in the morula embryo (XI) were of novel interest suggestive of a maternally stored transcript. Intriguingly, the CD44 early presence seemed to be essential for the rapid synthesis of hyaluronan. At stage XIII (blastula), CD44 expression was intense in the epiblast and hypoblast. During gastrulation (HH3-4), the cells ingressing into the primitive groove and migrating and the blood islands expressed CD44 intensely. At HH8, the folding neural plate showed polarity regulation of CD44 expression, and expression was also intense in neural crest, notochord, and blood islands. During early organogenesis, CD44 was expressed intensely in the developing cranial and caudal neural tube which showed polarity regulation, in optic stalks, otic vesicles, pre-and migratory neural crest cells, ganglia, notochord, pharynx, gut, liver, aortae, heart, somites, vascular area, amnion, chorion and was distinct in extracellular matrix of cranial neural tube and otic vesicle lumens. Antibody-mediated perturbation of CD44 function resulted in unorganized extracellular matrix, loss of tissue spaces, grossly abnormal notochord, intermingling of clumped neuroectoderm and mesenchyme, absence of somites and blood vessels, inhibition of neural crest cell emigration. CD44 has various pivotal roles in matrix integrity and tissue patterning consistent with its known biochemical features and interactions with hyaluronan, growth factors, receptors and other signaling molecules.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78362851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vasiliki Kommata, Evaggelia Alexopoulou, Elentina K. Argyrousi, C. Dermon
{"title":"Pleiotrophin, nitric oxide and glutamate AMPA receptors in chick cerebellum morphogenesis.","authors":"Vasiliki Kommata, Evaggelia Alexopoulou, Elentina K. Argyrousi, C. Dermon","doi":"10.1387/ijdb.210213cd","DOIUrl":"https://doi.org/10.1387/ijdb.210213cd","url":null,"abstract":"Avian cerebellum, a highly conserved, laminated and foliated structure, provides an excellent model for developmental studies. During the intermediate embryonic stages, granule cell progenitor proliferation and the inwards migration of post-mitotic granule cells have been implicated in the morphogenesis of cerebellar cortex cytoarchitecture and foliation. The present study questioned the spatio-temporal expression pattern of pleiotrophin, an extracellular matrix growth factor, during the morphogenesis of embryonic cerebellum and the roles of ionotropic AMPA glutamate receptors and the diffusible neuromodulator nitric oxide (NO) in the proliferation pattern of EGL granule cell progenitors. For this, the density of proliferating cells in the developing embryonic external granule layer (EGL) was determined following acute treatment with AMPA receptor antagonist CNQX or NO synthase inhibitor L-NAME, at embryonic stages HH38-41 (E12-E15 days), by means of BrdU immunohistochemistry and double immunofluorescence. Importantly, at earlier stages pleiotrophin-like immunoreactivity showed high expression levels in the EGL that gradually decreased, persisting within the growing folia apices, later in development. Interestingly, blockage of AMPA receptors had no effect; while NOS inhibition resulted in transient age- and region-specific increases of EGL granule progenitor cell proliferation at earlier stages, but decreased the post-mitotic granule cells at folia apices, at a later stage HH41 (E15 day). Taken all together, NO had a transient anti-proliferative effect in EGL similar to mammalian cerebellum, acting as a modulator of the EGL function at different stages, suggesting its possible implication in complex processes guiding cerebellar cytoarchitecture and folia formation.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87368888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the sister cells of embryo sac: developmental and functional attributes.","authors":"Inderdeep Kaur, Monika Koul","doi":"10.1387/ijdb.220025mk","DOIUrl":"https://doi.org/10.1387/ijdb.220025mk","url":null,"abstract":"<p><p>Synergids are metabolically dynamic cells of the egg apparatus and represent an important component of the female gametophyte. Besides directing the growth of the pollen tube towards the micropylar end of the embryo sac, these ephemeral structures make room for the pollen tube cytoplasm. The nature of chemotrophic substances that direct the growth of the pollen tube, the mechanism of degeneration of one of the synergids before fertilization and the molecular aspects of synergid morphogenesis have been studied in detail. Research carried out on model systems such as <i>Arabidopsis, Brassica, Capsella, Triticum</i> and <i>Torenia</i> has expanded our understanding of the molecular regulation of the pollen tube journey, its guidance and navigation in the pistil. Recently, the critical role of the central cell in fertilization and prevention of polytubey has also been thoroughly investigated. Interesting aspects that lead to degeneration of synergids, and the factors governing degeneration, including molecular aspects, have produced a paradigm shift in the understanding of these intriguing units. Sophisticated confocal microscopy, live cell imaging, and molecular tools have helped in furthering our knowledge of the functioning of synergids. Recent research using high throughput techniques has deciphered the role of various genes that regulate and govern the release of chemotropic substances, cell-to-cell interaction and synergid cell degeneration. Moreover, with the diversity displayed in form and function of organs in the angiosperms, and the switching of roles of the cells of egg apparatus, new insights have been provided into the involvement of synergids both pre- and post-fertilization. The present review provides a comprehensive account of synergids, their role in fertilization and the post fertilization events that have emerged using interdisciplinary approaches in recent years. We also discuss the variations observed in degeneration of synergids and the mechanisms that have been unraveled recently. Study of the dynamism exhibited by synergids reveals newer roles of these in fertilization. How synergids in angiosperm taxa where genetic transformation/alteration is carried out will respond to pollen stimuli is still unknown. Since environmental factors such as light and temperature have a significant impact on synergids and fertilization, it would be rewarding to study the role of chemo-attractants and other factors in elucidating the functional roles of synergids. Further research into developing adequate protocols for manipulating synergid functions is certainly required. This research has enormous potential in the advancement of basic science and has potential applications in agriculture, horticulture, and bioprospecting.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"349-358"},"PeriodicalIF":0.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40720125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correlation between CDK1 protein and CDK1 mRNA during oocyte maturation in mouse.","authors":"Ya-Ting Sun, Ai-Zhen Zhu","doi":"10.1387/ijdb.220002za","DOIUrl":"https://doi.org/10.1387/ijdb.220002za","url":null,"abstract":"<p><p>The aim of this study was to investigate the correlation between CDK1 protein and CDK1 mRNA during oocyte maturation <i>in vivo</i> in mouse. GV, GVBD, MI and MII oocytes were obtained from mice, respectively. Western blot validated that the CDK1 protein expression increased continuously and significantly with oocyte maturation <i>in vivo</i> (P<0.05). Real-time qRT-PCR showed that CDK1 mRNA expression was down-regulated significantly during transformation from GV to MI stages (P<0.05), and up-regulated significantly during transformation from MI to MII stages (P<0.05). The level of CDK1 mRNA peaked at MII stages. Spearman correlation analysis indicated that CDK1 protein expression was poor correlation with CDK1 mRNA expression during oocyte maturation <i>in vivo</i> (R=0.200). This finding suggested that the increase of CDK1 protein during oocyte maturation <i>in vivo</i> was not entirely caused by the change of transcription level. The results provide new food for thought for further research on the molecular mechanism of oocyte maturation <i>in vivo</i>.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"305-309"},"PeriodicalIF":0.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40407582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developmental Biology in Greece.","authors":"N. Zagris","doi":"10.1387/ijdb.220039nz","DOIUrl":"https://doi.org/10.1387/ijdb.220039nz","url":null,"abstract":"<jats:p />","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"27 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77839283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aristotle (384-322 BC): the beginnings of Embryology.","authors":"N. Zagris","doi":"10.1387/ijdb.220040nz","DOIUrl":"https://doi.org/10.1387/ijdb.220040nz","url":null,"abstract":"Aristotle made important contributions to many fields-biology, physics, metaphysics, logic, ethics, rhetoric, psychology, aesthetics, poetry- that are now cultivated by specialized experts, but he never lost sight of the aim of unifying knowledge, of understanding the world as an organized whole. Aristotle was the first to combine wet, field biology with daring cosmological thinking. He is the father of natural history and the first embryologist known to history. Aristotle's classic treatises History of Animals/Περί ζῴων ἱστορίαι, and On the Generation of Animals/ Περί ζῴων γενέσεως \"enjoyed for more than fifteen hundred years an authority altogether without parallel\". Over the last four decades, the introduction of molecular techniques has gradually overturned the entire structure of the biological sciences. Biology, initially a science of inventory and classification in the hands of the 19th-century comparative naturalists, has become a science of codes and regulatory circuits. Aristotle was the first to codify laws of pure logic, and so he founded what is today known as ' proof theory' in mathematics. Aristotle was an inveterate collector and a classifier, the master scientist of his time. His main concern was to classify \"the ultimate furniture of the world\", under basic headings and categories, a powerful human strategy to organize knowledge for comprehension and action. This was part of Aristotle's attempt to create a theory of reality, one strongly opposed to Plato's otherworldly doctrine of the ideal 'forms'. To many generations of thinkers in the great era of Scholastic philosophy, Aristotle was known simply as \"The Philosopher\".","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"14 1","pages":"5-8"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83441353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intraflagellar transport 20 cilia-dependent and cilia-independent signaling pathways in cell development and tissue homeostasis.","authors":"Fu-Chang Jin, Ming-Hui Zhou, Jing-Jing Chen, Yi Lin, Qi-Wei Zhang, Qiu-Xian Xu, Chang-Chun Zhang, Zhen-Gang Zhang","doi":"10.1387/ijdb.220072fj","DOIUrl":"https://doi.org/10.1387/ijdb.220072fj","url":null,"abstract":"<p><p>Intraflagellar transport (IFT) is an essential condition for ciliogenesis. The primary cilia protrude like antennae and act as chemical or mechanical sensory organelles that coordinate specific receptor localization and signal transduction. IFT20 is the smallest molecule in IFT complex B, which is located in both the cilia and the Golgi complex. Recent studies have shown that IFT20 is a key molecule in multiple signaling pathways. Importantly, in the function of IFT20, signal transduction is not restricted to cilia, but is also involved in non-ciliary functions. Here we summarize current knowledge regarding IFT20-mediated signaling pathways and their relationship with cell development and tissue homeostasis, and analyse the cilia-dependent and cilia-independent mechanisms of IFT20 coordinated signaling pathways and potential crosstalk between the mechanisms. This review provides a comprehensive perspective on IFT20 coordinates signaling mechanisms in cell development and tissue homeostasis.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"333-347"},"PeriodicalIF":0.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40720126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monica Alves Rodrigues-Da-Silva, Guilherme de Espindola da Silveira, Clarissa Reginato Taufer, Giordano Wosgrau Calloni
{"title":"The mesenchymal potential of trunk neural crest cells.","authors":"Monica Alves Rodrigues-Da-Silva, Guilherme de Espindola da Silveira, Clarissa Reginato Taufer, Giordano Wosgrau Calloni","doi":"10.1387/ijdb.220032gc","DOIUrl":"https://doi.org/10.1387/ijdb.220032gc","url":null,"abstract":"<p><p>It has long been held that the main difference between cranial and trunk neural crest (CNC and TNC, respectively) was the potential of CNC to originate mesenchymal cell types, especially skeletogenic. This is an age-old question that continues to challenge researchers, even today. Unfortunately, to date, no consensus has concluded the extent of TNC mesenchymal potential, nor has a systematic review been conducted to organize current knowledge about this fascinating question. However, the number of studies related to this question have expanded and deepened considerably in the last few years thanks to several new different species of vertebrates employed, the generation of transgenic animal strains, the combination of cell markers, and also the improvement of cell culture conditions through the use of different substrates and signaling molecules. Therefore, this review summarizes the literature showing that TNCCs can generate a broad range of mesenchymal cell types, including skeletogenic. This potential can be unveiled by certain favorable <i>in vitro</i> conditions, but it also seems to be expressed in some animal structures <i>in vivo</i>, to which TNCCs contribute. We also present several works that offer a contrary view and do not detect any mesenchymal/skeletogenic contribution of TNCCs <i>in vivo</i>. Perhaps, it is the controversy itself that makes this subject even more exciting.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"317-331"},"PeriodicalIF":0.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40590251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular characterization of the prostaglandin E receptor subtypes 2a and 4b and their expression patterns during embryogenesis in zebrafish.","authors":"Yongjun Han, Hongbo Chang, Hong Wu","doi":"10.1387/ijdb.210003w","DOIUrl":"https://doi.org/10.1387/ijdb.210003w","url":null,"abstract":"The molecular expression profiles of zebrafish ep2a and ep4b have not been defined to-date. Phylogenetic trees of EP2a and EP4b in zebrafish and other species revealed that human EP4 and zebrafish EP4b were more closely related than EP2a. Zebrafish EP2a is a 281 amino acid protein with high identity to that of human (43%), mouse (44%), rat (43%), dog (44%), cattle (41%), and chicken (41%). Zebrafish EP4b encoded a precursor of 497 amino acids with high amino acid identity to that of mammals, including human (57%), mouse (54%), rat (55%), dog (55%), cattle (56%), and chicken (54%). Whole-mount in situ hybridization revealed that ep2a was robustly expressed in the anterior four somites at the 10-somites stages, but was absent in the somites at 19 hpf. It was observed again in the pronephric duct at 24 hpf, in the intermediate cell mass located in the trunk, and in the rostral blood island at 30 hpf. Ep2a was also expressed in the notochord at 48 hpf. During somitogenesis, ep4b was highly expressed in the eyes, somites, and the trunk neural crest. From 30 to 48 hpf, ep4b could be detected in the posterior cardinal vein and the neighboring ICM. From these data, we conclude that ep2a and ep4b are conserved in vertebrates and that the presence of ep2a and ep4b transcripts during developmental stages infers their role during early zebrafish larval development. In addition, the variable expression of the two receptor isoforms was strongly suggestive of divergent roles of molecular regulation.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73325440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}