Wnt信号通路在动物模型系统再生中的作用。

Katarzyna S Walczyńska, Ling Zhu, Yujun Liang
{"title":"Wnt信号通路在动物模型系统再生中的作用。","authors":"Katarzyna S Walczyńska, Ling Zhu, Yujun Liang","doi":"10.1387/ijdb.220144yl","DOIUrl":null,"url":null,"abstract":"<p><p>Regeneration enables the regrowth and restoration of missing body parts. It is a common phenomenon among animals. However, only some species exhibit remarkable regeneration capabilities and can regenerate organs such as limbs, lenses or hearts. Regeneration has been widely studied, thereby giving rise to new fields, such as regenerative medicine. Furthermore, regeneration has the potential to be applied to the human body. However, the molecular mechanisms governing this process should be elucidated first. Recent advancements in research methods have led to the identification of numerous signaling pathways involved in regeneration. One of them, the Wnt transduction pathway, is an ancient and evolutionarily conserved pathway that plays an important role in both embryonic development and regeneration. The Wnt pathway plays an important role during the regeneration process, as it is implicated in cell fate determination, cell migration, cell polarity and adult cell homeostasis. To date, two major Wnt pathways have been identified: the canonical (β-catenin dependent) pathway and the non-canonical pathway. The latter pathway can be further divided into planar cell polarity, the Wnt/Ca2+ pathway and the JNK pathway. In this review, we summarize the current state of knowledge regarding the Wnt signaling pathway and its role in regeneration, with a particular emphasis on key model species.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"67 3","pages":"65-78"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the role of the Wnt signaling pathway in the regeneration of animal model systems.\",\"authors\":\"Katarzyna S Walczyńska, Ling Zhu, Yujun Liang\",\"doi\":\"10.1387/ijdb.220144yl\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regeneration enables the regrowth and restoration of missing body parts. It is a common phenomenon among animals. However, only some species exhibit remarkable regeneration capabilities and can regenerate organs such as limbs, lenses or hearts. Regeneration has been widely studied, thereby giving rise to new fields, such as regenerative medicine. Furthermore, regeneration has the potential to be applied to the human body. However, the molecular mechanisms governing this process should be elucidated first. Recent advancements in research methods have led to the identification of numerous signaling pathways involved in regeneration. One of them, the Wnt transduction pathway, is an ancient and evolutionarily conserved pathway that plays an important role in both embryonic development and regeneration. The Wnt pathway plays an important role during the regeneration process, as it is implicated in cell fate determination, cell migration, cell polarity and adult cell homeostasis. To date, two major Wnt pathways have been identified: the canonical (β-catenin dependent) pathway and the non-canonical pathway. The latter pathway can be further divided into planar cell polarity, the Wnt/Ca2+ pathway and the JNK pathway. In this review, we summarize the current state of knowledge regarding the Wnt signaling pathway and its role in regeneration, with a particular emphasis on key model species.</p>\",\"PeriodicalId\":94228,\"journal\":{\"name\":\"The International journal of developmental biology\",\"volume\":\"67 3\",\"pages\":\"65-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International journal of developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.220144yl\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1387/ijdb.220144yl","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

再生可使缺失的身体部位再生和修复。这是动物中常见的现象。然而,只有一些物种表现出非凡的再生能力,能够再生四肢、晶状体或心脏等器官。再生已经被广泛研究,从而产生了新的领域,如再生医学。此外,再生具有应用于人体的潜力。然而,应该首先阐明控制这一过程的分子机制。研究方法的最新进展导致了许多与再生有关的信号通路的鉴定。其中之一,Wnt转导途径,是一种古老且进化保守的途径,在胚胎发育和再生中发挥着重要作用。Wnt途径在再生过程中发挥着重要作用,因为它与细胞命运决定、细胞迁移、细胞极性和成体细胞稳态有关。到目前为止,已经确定了两种主要的Wnt途径:经典(β-连环蛋白依赖)途径和非经典途径。后一种途径可进一步分为平面细胞极性、Wnt/Ca2+途径和JNK途径。在这篇综述中,我们总结了关于Wnt信号通路及其在再生中的作用的知识现状,特别强调了关键的模式物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into the role of the Wnt signaling pathway in the regeneration of animal model systems.

Regeneration enables the regrowth and restoration of missing body parts. It is a common phenomenon among animals. However, only some species exhibit remarkable regeneration capabilities and can regenerate organs such as limbs, lenses or hearts. Regeneration has been widely studied, thereby giving rise to new fields, such as regenerative medicine. Furthermore, regeneration has the potential to be applied to the human body. However, the molecular mechanisms governing this process should be elucidated first. Recent advancements in research methods have led to the identification of numerous signaling pathways involved in regeneration. One of them, the Wnt transduction pathway, is an ancient and evolutionarily conserved pathway that plays an important role in both embryonic development and regeneration. The Wnt pathway plays an important role during the regeneration process, as it is implicated in cell fate determination, cell migration, cell polarity and adult cell homeostasis. To date, two major Wnt pathways have been identified: the canonical (β-catenin dependent) pathway and the non-canonical pathway. The latter pathway can be further divided into planar cell polarity, the Wnt/Ca2+ pathway and the JNK pathway. In this review, we summarize the current state of knowledge regarding the Wnt signaling pathway and its role in regeneration, with a particular emphasis on key model species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信